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Abstract 
This report summarizes the second six months of work of the coordinated research project, 

"Transformation of Ada Programs into Silicon." (The main objectives of this project vrere 
outlined and then introduced in depth in the preceding semiannual report.) In the past seven 
months, work has advanced in three main areas. Expanded summaries of work in these areas 
(and subareas) are presented: 

1. Work on the principal case study of this project: Converting the DoD Internet 
Protocol to silicon. The full Protocol has beer, decomposed into three main parts. 
The part that handles outbound datagrams has beer, fully specified in Ada and 
an interesting part of that code has been transformed into an NMOS circuit 
composite represented in PP1, (Path Programmable Logic). 

2. A tranformation system is being implemented to map Ada program units into 
intermediate forms in syntactically correct Ada. These intermediate forms are 
suitable for input to the transformatior; system (ASSASSIN) that automates the 
production of the asynchronous control components ci the PPL circuit composites. 
A theory for synthesizing circuits from system specifications that are more 
abstract than A da is also reported. 

3. Research and Development on the design, fabrication, and application of PPL 
(Path Programmable Logic) circuit arrays is reported 

a. The ASSASSIN system which transforms state graphs of state machines 
expressed in textual form to self-timed PPL programs and composites is 
operational. 

b. Completion of a PPL simulator (ASYLIM) has been incorporated into the 
PPL design system. 

c. Design and composite layout of three different PPL test drcuits were sent 
out for fabricaton. The circuits will be used to check a wide variety of 
PPL cells and supporting circuitry. 

d. A design technique for ICs representing self-timed stored state machines 
and data path components using the PPL cell set has been developed. The 
results of the research have produced new PPL macro cells which 
augment the set of available cells. 
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1. Summary 
This report summarizes the second six months of work of the coordinated research prqject, 

"Transformation of Ada Programs into Silicon." Project objectives span a broad and ambitious 
spectrum (broader than the already broad title implies), hence the term coordinated; this 
refers to the fact that, on the one hand, all research within the project is closely related, but 
that the overall project success is not predicated on close coupling of individual subproject 
results. The main objectives of this project were outlined and then introduced in depth in the 
preceding semi-annual report [19]. They are repeated here in more brief and in a somewhat 
updated form: 

1. Develop elements of a tranformation methodology for converting Ada programs 
or their parts, into VLSI systems. This research includes identifying a sufficient 
set of transformation rules for mapping program specifications through 
successive levels of representation, from Ada or related abstract specifications, to 
integrated circuits. 

2. Demonstrate the methodology developed in 1 by manually applying it to a non- 
trivial example: transforming an Ada-encoded representation of the DoD 
Standard Internet Protocol [20] (or a significant subset thereof) into NMOS 
circuitry. 

3. W ork toward a theory for identifying substructures within Ada programs for 
which the transformation methodology is pragmatically attractive. 

4. Develop specifications for a set of software tools for use in automating the 
transformation methodology developed in 1. 

5. Develop a methodology for testing integrate circuits representing Ada program 
units and for integrating such circuits into a larger system. 

In the past seven months, our work has advanced in three main areas and in several 
subareas listed below. Expanded summaries of work in these areas are presented in 
succeeding sections of this report. 

1. W ork on the principal case study of this project: Converting the DoD Internet 
Protocol to silicon. The full Protocol has been decomposed into three main 
parts [18, 13]. The part that handles outbound datagrams has been fully 
specified in Ada [14] and part of that code has been transformed into an NMOS 
circuit composite [6]. 

2. Implementing a tranformation system to map Ada program units into 
intermediate forms in syntactically correct Ada. These intermediate forms 
represent <state machine, data path> pairs suitable for input to another 
transformation system that automates the production of circuit composites [24]. 

a. Development of a theory for synthesizing circuits from system 
spedficalions that are .nore abstract than Ada, e.g., axiomatic algebraic 
specifications or from Ada augmented with ANNA-like specifications that 
also aljow specification of temporal properties. [12, 29, 25, 26] 

3. Research and Development on the design, fabrication, and application of PPL 
(Path Programmable Logic) circuit arrays. 

a. Completion of the transformation system called ASSASSIN, reported in 
detail elsewhere [7], which transforms state graphs of stale machines 
expressed in textual form to self-timed PPL Programs and composites. 

b. Design and composite layout of three different PPL test circuits called 
UU20, UU21. and UU23. UU20 is used to check the read-enable flip- 
flop, the write-enable flip-flop, the asynchronous-clear flip-flop, row 
pass-transistors, and flip-flop pull-up cells. UU21 checks the Set/Reset 
flip-flop, the two-wire latch, the inverter cells, the column pass- 
transistor, and the S, R,l, and 0 cells. UU23 checks the input and output 
pad cells. In addition, a test circuit containing several different oscillators 
and counters has been included for determining performance. 

UU20 and UU21 were sent to M OSIS for the June 4 run, and in July we 
were informed that, due to some mask problems, none of the circuits were 
completed. W e are still waiting for these parts.  In September we decided 
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to process all three test drcuits in our own (HEDCO) laboratory. 
Problems with mask making equipment have caused delays, however, 
UU20 and UU21 are expected out of the process line in late November or 
early December. UU 23 should also be processed in December. 

c. Completion of a PPL simulator called ASYLIM which has been under 
development for the past year. (The work was sponsored primarily by e 
commercial company. The simulator was incorporated into the PPL 
design system for use in this project. The main characteristics of this 
simulator are outlined in Section 4 of this report. 

d. Development a design technique for ICs representing self-timed stored 
state machines and data path components using the PPL cell set. (The 
work was sponsored by a private company.) These techniques have been 
primarily directed at the design of drcuits using a conventional single- 
rail Four Cycle signalling protocol. The results of the restarch have 
produced new PPL macro cells which augment the set of available cells 
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2. Converting the DoD Internet Protocol to Silicon. 
by 

Elliott I. Organick and Gary Lindstrom 

As mentioned previously [19], our design of the Protocol is based on a decomposition into 
three <=ubmodules: INM_ OUT dealing with traffic outbound on a given local net, INM_ IN 
similarly handling inbound traffic and IKM _ SRV tying them together and interfacing to the 
Hcst(s).' VT e envision one IKM _ IN and INH-OUT pair of submodules for each local net 
interface, but only one IN M _ SRV submodule per Internet M odule (IN M ). 

We are following the fiveHevel software development and testing plan discussed in the 
preceding report. The levels correspond to IP applications in increasingly generalized settings. 
The plan stipulates testing as each level is reached, rather than as an epilog to the 
development plan. Testing is to be conducted at several levels, from the physical 
characteristics of the circuits themselves to the (Ada) semantic behavior of the submodules 
that have been converted to circuits. 

After designing (specifying) the interfaces between the submodules [13, 10], we then 
selected the INM _ OUT (sub)module as the first one to be converted to arcuitry. W ork toward 
this objective in the past seven months has been rapid in some respects and slow in others. 

The specific and significant accomplishments have been as follows: 

1 W e have coded the complete INM _ OUT submodule in Ada and have succeeded 
in compiling most of it for execution on the Intel iAPX 432 system except for 
statements and declarations associated with uses of the Ada rendezvous 
construct. 
[As later versions of the Intel compiler become available, we expect not only to be 
able to compile the full module using rendezvous syntax and semantics, but to 
execute it in this mode as well. In the meantime we are working with a version 
of the oode that simulates each rendezvous via Send/Receive primitives 
instantiated through use of the A da generic package mechanism] 

2 The INM     OUT submodule is an Ada package named INM- OUT- Module; it 
' contains  three intercommunicating Ada  tasks.     We are  in   the  process  of 

transforming each J these tasks into PPL circuit composites beginning with the 
second one listed below: 

a The main task, named INM _ OUT, interfaces with INM _ SRV and with 
LN M _ OUT such that a pipeline effect is achieved for speeding datagrams 
along the outbound data path: Host module —> INM_ SRV —> 
INM-OUT —> LNM_0UT. 

b An auxiliary (server) task, named Read- Init- Parameters, which obtains 
from host-related memory the initial parameter values needed Lc perform 
datagram transmission. Transformation of this server task, one which is 
rich in Ada control structures, is essentially completed. A demonstration, 
showing the process by which we make the transformation tc PPL circuit 
composite was given in June, 1982 during a DARPA review of our project. 
That demonstration was based on a preliminary version of the Ada task, 
which has now been updated. The composite produced for the current 
version of the task is mere interesting and is apt lc resemble more closely 
the one we eventually will consider the final version. 

c Ar auxiliary task named Translate-TOS_ Task, which operates in 
parallel with INM - OUT, the main task, by translatiing lype-of-service 
information from host-level to local-net level encoding. 

3 As just mentioned, the task Read. Init_ Parameters has now been converted 
semi-«utomatically to PPL circuit composites in NMOS. The conversion into 
PPL composite form is discussed in part in a new paper by Carter, to be presented 
at a DARPA-sponsored meeting at Stanford, on November 5 and in part below 
Carter's paper focuses primarily on the technology for converting the control 
structure  portion of the Ada task  into the self-timed control  unit  of the 
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In this report we make some observations on the overall structure of 
Read- Init_ Parameters and on some of its subtle details. V e also comment on 
so:r° of the steps we traversed In arriving at this versicr. of the task. A copy of 
the body part for the present version of this Ada task is to be found in the 
Appendix. 

[The complete Ada specification of the INM_ OUT submodule, which includes 
this task is giver, in a separate report [14], A reader c: the Appendix version 
-nly is expected to imagine how the task Read- IrJt_ Parameters interfaces with 
the remainder of the entire submodule. A reader of the separate report is treated 
to a "road map" o.' the full Ada structure of the INM_ OUT submodule which 
helps to understand our overall design.] 

4. As a prelude to testing hardware versons of Ada pargrara units and in support of 
our work in specifying subsystems in Ada and then simulating them, we 
installed, made operational, and have begun using a complete Intel 432 Cross 
Development System. This system indudes an Ada cross' compiler for a large 
subset of Ada and a 432 multiprocessor system consisting of two regular and two 
interface prooessors. \f e expect to receive from Intel a compiler that includes full 
tasking by the end of calendar 1962 and an equally complete resident compiler 
approximately a year later. We have also gained hands-on familiarity with a 
number of the 432 System's operating system features. 

2.1. Interesting aspects of Read- Tnit   Parameters 
The structure of Read- Init_ Parameters includes a number of typical and interesting 

features of Ada tasks both from the point of view of inter-task communication and intra-task 
body structure 

-Inter-task communication. The task indudes nested accept statements both of 
which have both in-bound and out-bound parameters. There accept statements 
are implemented using simple request/acknowledge protocols. 

-Intra-task computation. The task body indudes a rich nested loop structure and 
one nested block defining local variables whose ranges are determined 
dynamically. The loops include the infinite outermost loop of the task, familiar 
"for" loops with fixed upper bounds, and indefinite loops escapes from which are 
based on "exit when" dauses. As we have expected all along, all of these Ada 
control structure forms map in a straightforward way to correspondirg control 
structures at the state machine level and thence to PPL drcuits. 

The data path of Read. Init_ Parameters includes several variables which are represented 
in the hardware as registers or counters. One array variable is represented as a RAM to 
represent a map from type-of-service encoded at the host level to type-of-service encoded at 
the local net level. [The size of this RAM , which is never apt to be very large in any case is 
limited to four-octets (for a 2 by 2 array) in our demonstration implementation, M cst of the 
above variables are shared with the other two tasks of the submodule- that is they are 
declared local tc the containing package, INM_ OUT. Module, however we perceive no 
difficulty in achieving mutually exclusive access. 

The one variable that is local to the entire server task does not and is not represented in 
hardware as a storage element. Variables used locally for loop control are represented as 
hardware counters and/or registers, but some sharing is achieved where there is no chance for 
ccnflid. 

Although the transformation to the Ada code tc the "engine level", i.e., to representation as 
a (control unit, data path) pair, has been done by hand, the transformation research reported 
in the next section has induded consideration of each of the "hand-made" mapping steps in 
this particular exerdse. 
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2.2. Arithmetic processing 
That we have encountered so little trouble performing the mapping for this task is partially 

explained by the fact that the task involves only trivial arithmetic processing. (Indeed, the 
entire INM _ OUT_ M odule involves only minor arithmetic processing.) At this stage of our 
research we are glad this is the case as we consider it important to determice first what new 
challenges, if any, must be met for achieving asynchronous control. 

2.3. On going and future related work 
Now that this part of the research is essentially complete, including the development of the 

ideas embodied in ASSASSIN, we expect to be concentrating next on such challenges as the 
application of the same or related asynchronous design principles to arithmetic processing. 
Also included in our agenda is research intended to help us automate the mapping of data 
path storage components, identified in the transformation from Ada program units, into PPL 
circuits coupled to their controls. 

r 
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3. A Transformation System; Theory and Implementation 

by 

P.A. Subrahamanyana 

W e have made substantial progress along two directions: implementation of a prototype 
transformation system and further development of a conceptual/theoretical basis to support 
the design of integrated software-hardware systems. We outline the major contributions 
below, with appropriate pointers to references that contain more detailed discussions. 

3.1. Systems Implementation 
~A set cf tools to support experimentation with Ada-to-Silicon transformations has 

been implemented, and runs on the TOPS-SO. The system has been ported to the 
VAX-750, and an initial version has been installed. This porting proved to be a 
major job (and problem) due to unstated incompatibilities between INTERLISP-20 
and INTERLISP-VAX. Further debugging and testing of the Vax version will be 
done when the experimentation is moved completely over to the Vax. (Given the 
needed personnel, we expect this to be carried out over the next year, when our 
address space requirements force us to move over to the Vax). 

—An initial set of transformation routines has been implemented and is being 
augmented so as to handle additional syntactic constructs in Ada. This set of 
programs is intended to aid in the interactive generation of the target hardware 
description in a symbolic representation. Details of the current status of this work 
are reported in [24]. 

3.2. Conceptual/Theoretical Basis for Transformation 

—A unified theoretical framework to support a broad spectrum of the VLSI design 
process has been introduced in [29], which is currently available in the form of the 
draft of a research monograph. This monograph introduces an algebraic 
framework to aid in the synthesis and verification of special purpose VLSI 
systems, proceeding from high level specifications. It allows for abstract 
specifications of the syntax, semantics, temporal and performance requirements 
particular to a giver, problem. The characteristics of the environment in which the 
system is embedded can also be specified and are used in the synthesis process. In 
addition, the framework allows several of the oonstructs in existing languages to 
be modelled, including nondeterminism, concurrency, and data/demand driven 
evaluation. This allows the infrastructure to be (1) applied to situations wherein 
the problem "specification" is in the form of a program in a conventional high level 
language and (2) used to model the lower level synchronous/asynchronous nature 
of implementations. Topology and circuit layout geometry can also be expressed 
by using the algebraic primitives available. 

—Annotations to Ada have been proposed to aid the abstract specification of 
temporal properties of systems and desired performance requirements [25. 26. 12]. 

-Transformation methods to apply the theory in the context of Ada to obtain 
systolic implementations are detailed [27, 24]. 

—A n algebraic modelling of weak conditions to be met by asynchronous circuits has 
been done — the resulting model is very simple, and the conditions concise and 
intuitive [26]. 

Following a discussion of the spedfication and synthesis methods, illustrations are given 
in [29] that demonstrate the use of the proposed theoretical basis in synthesizing various 
classes of algorithms. It is shown how (families of) systolic algorithms may be obtained as a 
special case. Methods for proving the correctness of implementations are presented and 
illustrated with examples. The concept of the propagation of computational lod arises 
natur illy in course of the development, and serves to generalize the commonly used notion of a 
"wavufront" of computation for 2-dimensional architectures. Automatable design aids based 
on the proposed algebraic basis are delineated.  Finally, it is shown how M OS drcuits can be 

MaMiuUkAK,  - I  
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modelled using the primitives available, and the algebraic derivatiou of Bryant's simulation 
algorithm used in U OSSIM II is illustrated in this context 

3.2.1. Interface V ith Diana 
U ost of our transformation tools use the parse tree representation of a program as the 

primary data structure they work with. W e have in mind the long term objective of being able 
to interface with the tools that are designed to operate on Ada program parse trees, and that 
being developed by the Ada community at large (and in particular the DARPA community). 
To this end, we have been interacting (to a limited extent) with the Diana group (primarily at 
Tartan Laboratories). 

3.3. Some Remarks on System Implementation Issues 
W hile we are continuing work on the current version of the transformation system (in 

Interlisp, and on the Vax and DEC-20), it has become clear that there are two mtjor 
defidendes that need to be remedied sooner or later. These are (1) unsuitability of the current 
parse tree interface (and parser generator) for several of the transformation routines 
themselves; and (2) (lack of) speed: this is due to the slowness of Interlisp on the Vax 
(compounded, of course, by the fact that we are working with non—trivial pieces of software). 

To solve the first problem, it is necessary to redesign the parser generator (which has been 
imported from ISI [31]). However, since the other tools (particularly the syntax directed editor 
generator and pattern matching system) and the history list mechanism are all very much 
inter-related and quite deeply ingrained in the system, there is a substantial software 
development effort involved in doing this. Currently, we have neither the equipment nor the 
man-power to support such an effort. We envision the redesign being more profitably done 
using a newer generation of Lisp (e.g. PSL, CommonLisp) for effidency reasons, and run on 
personal machines, rather than on a Vax like machine. In the interim, however, the response 
of the extant version of our system can also benefit greatly from being run on an Interlisp— 
supporting machine, e.g., the Dorado/Dolphin. Having access to such systems would 
obviously result in greatly improved programmer productivity. 

  .i. 
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4. PPL Design Activities 

by 

Kent F. Smith, Brenl Nelson, Tony Carter, and Alan Hayes 

p^ra^TbllToSc rPPMh^V11^/9^ T^1! ^  a  ^hodology  known as Path rrccrarr.. .able Logic (PPL) has been developed by the Utah VLSI Group Thi>= work has beer 

Sd iHart Phvrl ^ 'H lARPA a,nt,raCl and by COIltr«cta with other^e^t agenda 
«mn£ P!,      y SUVf°*  f,r0? S^eral  iDdependent oompanies.   The system addrü?^ 
St Sf t^016 lnClU^n! iriilial  l0gic desi^- ^t layout, stoSiüTSSrS; checking, and pattern generator tape preparation. It includes- (l) symbolic lavoi ♦ nrnJr»^.?-, 

4.1. PPL Design Characteristics 
The characteristics of design using the PPL methodology include: 

1. IC design is performed by placing small circuit modules which can be represented 
vrith loipc symbols on a grid representing the integrated circuit.   W hen the grid 
LA fh3; POpUlf ^ iS b0^ the loßical ^presentation and the topologlS 

layout of the arcuit.   Effiaenl design changes can be made as a result of this 
Jr!!

ßI:f
met

f
hod0l0gy ^^ the designer has simultaneous perception of the 

circuit function and the circuit topology. 
2' Jw^I m°du1^ have predefined schematic and composite representations 

They are custom deslgned to optimize performance and size for any specie 

^ ^Tv01111-.^00635- De£lgr- Rule Checkinß <DRC) I» Performed or the module and thus it is not necessary to do DEC on the overall circuit since it is 
simply a collection of drcuil modules. 

3 lÄ^t0^11 Can be deSigned i0 PPL and no ^o™ d«ign is required. The 
pads and the interconnect can also be made by the placement of PPL cells on the 
gnd. All interconnections between modules are there by default The designer 
only places breaks to remove connections rather than to add them.    ' ' 

*" O/PPT^' ^T if P0Sfib)e^ ^«n design of macros which are collections 
of PPL cells put together tr. perform spedfied functions. These macros cells can 
have custom physical shapes to conform to specific space requirements 

5. Simulation ard checking are easily accomplished, eliminating the need for very 
difficult and time-consuming operations. The only elements manipulated are 
symbols ratne-r than transistors or rectangles which, must be checked .rsvsterL 
that design at the transistor level. systems 

4.2 The Analogy Between the PPL Design and a Computer Program 
There is an analogy between the development of the PPL desigr methodoloev and 

programming languages. The l's and O's which were used in eSy nSSKe laMut« 
ZT^TT^^uf are ana,0gous l0 the rectangles which an. used in the custom layout of 
r wHH *™i*- V™ng trans

J
istorE ™ a composite might be thought of as being analogoui 

to wnüng machine language code in hexidedmal since we are still placing rSSngl«T^ 
grid ,n shorthand form. The PPL design methodology is analogous to writing progr?ns"in 
assembly anguage where mnemonics are used to represent spedfic collectiors oftrirStor^ 
(function*)- jhls PPL design methodology is still ver? dependent upon   he sped^  eSo^ 

depetden;5        '        ^    ^ " ^^ t0 the ^ ^ aSSerabl>' '-guage'Ts mtÄ 

uJnl ^f0^ bf Tfuen the ^l0Pinent of computer programs and the PPL methodology can 
be earned even further with the compilation of high level circuit description languages to 

■ -- ^-«i-e-^-^-Tt,^..!.-.       ,-,       .,, 
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integrated circuit layouts (silicon compilers). The high level descriptions of the integrated 
circuit are machine independent and are compiled directly to a specific PPL cell aei designed 
in a particular technology. To date there have been cell sets done in N M OS [21], CM OS [22] , 
and I2L [23]. An example of such a silicon compiler is A SSA SSIN [7] which is currently in use 
at the U niversity of U tah. 

4.3. Design Time vs. Integrated Circuit Area 
The main disadvantage of PPL design methodology is that it will probably result in circuits 

which are larger than completely custom-designed circuits. Previous work done by the VLSI 
group at the University of Utah has compared some custom designs to some PPL designs. This 
gives insight into the tradeoffs which exist between the two techniques. A circuit known as 
the Utah Serial Cordic Machine (USCM) was designed under a contract withW right Patterson 
AFB for the VHSIC program [3, 4, 5] using both custom design techniques and the PPL Design 
Methodology. The USCM was constructed using an implementation similar to the shift- 
register scheme proposed by V older [30]. 

The USCM was implemented using a CMOS PPL cell set. Its design time and chip area 
were compared to those for an equivalent custom NMOS design done at Boeing Aerospace 
Corp. The entire CMOS PPL chip was designed and simulated in approximately eight man 
days, compared to approximately eighty man days for the NMOS custom design. The CMOS 
PPL design was 19 percent larger than the custom NMOS design. W hile these figures may 
not be an accurate reflection of the variables which enter into design time measurements, they 
are indicators that PPL designs require significantly less design time than do equivalent 
custom designs and result in chips which are not significantly larger in area. 

This favorable reduction in design time can be attributed to several factors: (1) The designer 
has concurrent perception of logical function and layout. Thus, he can immediately see when 
the logic function being implemented does not fit in well with the rest of the circuit. The logic 
design is made as the composite is drawn. This eliminates the need for separate composite 
layout/logic design stages. (2) The higher level symbolic notation allows the designer to 
manipulate very complex logical elements in an efficient manner. It is, for example, not 
necessary to trace a complex series of logic gates to determine the function of the circuit 
because the symbolic notation is easily read and interpreted. In addition, the symbolic 
notation car. be directly simulated and does not require the extraction of the transistor-level 
circuit from the composite. 

Past experience would indicate that the area penalty incurred by the PPL design 
methodology will eventually disappear as more sophsticated design tools are developed. This 
is again analogous to the development of compilers. It is well known that, as expertise in 
compiler writing improved, the gap between hand-coded and compiler-produced object code 
size became negligible. Some of the techniques being developed for compaction of integrated 
circuit layouts will be used to close the current gap between the area required for custom 
designs and automatically generated PPL layouts. 

4.4. The Utah PPL Design System 
In addition to the development of the PPL as a hardware implementation methodology 

described above, the otner major thrust of research here at Utah has been in developing 
software tools for PPL design. The goals of this software research have included Lhe following: 
(1) Finding ways to exploit the symbolic nature and representation of a PPL design to reduce 
design complexity. (2) Development of CAD tods around conventional computer hardware, 
which would allow designers to work from remcLe workstations. (3) Creation of a complete 
system to be used by the IC design community here at Utah. 

An integral part of the design system is a Computer Vision CADDS2/VLSI Designer 
System. It is used to do the composite layout of the individual PPL cells, placement of the 
individual cells on a grid to form a circuit, connecting the circuit to pads, adding scribe lanes, 
and generating a PC tape. Although we have relied heavily on this machine in the initial 
development of the system, in its absence all of the functions it performs could be done with 
other tools (the Cal-Tech Software Package for example). 

     —   
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The other part of the design system is built around a DECSystem-20. A silicon compiler for 
fimte state machines (FSM), a symbolic layout system, a simulator and cell placement 
checker, and a compaction program all reside there. The transfer of designs between the 
Computer Vision machine (CV) and the DECSyslem-20 is done using a mag tape written in 
Computer Vision External Database format. The combination of these two computers gives 
the system the power of the CVs IC layout features combined with the computing power of a 
mainframe. 

Each PPL oell used in the system has three representations. The composites of the cells are 
oesigned so that they fit together by virture of their being placed adjacent to each other on the 
grid. A schematic representation of each cell is created for reference. A graphical 
representation is also created which is used by the designer as he uses the cells tc form larger 
circuits. 

4.5. Presentiy Existing Circuit Layout Tools 
The placement of the PPL cells on the grid to form a circuit can be done using either the 

Computer Vision machine or one of several programs on the Utah DECSystem-20 The 
program used for cell placement on the DECSystem-20 is known as SLED (Structured Logic 
Editor) [15] . In SLED, the PPL design is represented as an array of cell symbols which are 
then edited. Y ith the SLED editor, a simple CRT terminal and modem is all that is needed for 
arcuit design but at the expense of more cryptic graphical representations of the individual 
PPL cells than those found on the Computer Vision machine. In general, the ability to use 
SLED from a remote terminal outweighs this limitation. Advanced editors are now being 
designed to run on a CRT terminal that will overcome some of the graphical limitations of 
SLED. 

i 

* 

SLED was designed to be similar to a screen-oriented text editor. In fact, the commands in 
SLED are the same as the equivalent commands in EM A CS [8], a popular screen-oriented text 
editor. Cursor movement is possible in any of the four directions, and regions (windows) can 
be marked and then named, deleted, replicated, or written to a disk file. Conventional text 
editors, however, only allow for scrolling and windowing in the vertical direction (lines longer 
than the width of the screen are wrapped around). In SLED, scrolling and windowing are 
possible in both directions. Thus, an array with SOC columns and 300 rows can be displayed 
and edited using SLED without screen wrap-around. The effect is that the user has an 80X24 
window which can be moved around the array. 

Circuit layout can alsc be accomplished using a first-generation silicon compiler. 
Compilaton of Ada language modules to circuits is accomplished using the program named 
ASSASSIN [7]. This program takes as its input a textual description of the operation of a 
control unit (Finite State Machine) and from it generates a PPL lavout implementing the 
control unit. 

4.6. Circuit Simulauon and Electrical Checking 
Simulation of the PPL design is essential before actual fabrication. An important part of 

the design system is a simulator (ASYLIM) which can do simulation of the PPL. Because the 
PPL cells are simulated and checked individually at the transient level when the cell set is 
designed, the complete circuit made up of PPL cells can be simulated at a switch or gate level. 
ASYLIM [16, 17] reads the circuit database written in Computer Vision External Database 
format. Thus, the actual design can be simulated rather than a logic equivalent. 

ASYLIM is similar tc other recently developed MOS simulators in that it uses a switch 
model. However, the development of a simulator for PPL has shown [17] that a spedal 
purpose simulator was required in order to preserve the user's abstract view of the circuit. 
The input format to existing simulators is typically given in the form of a table or listing of 
transistors and nodes. To preserve the user's abstract view of the circuit it was necessary to 
design a simulator for PPL where the elements in the simulator correspond to those in the 
PPL cell set During the interactive debugging phase of the simulation of a circuit, the user 
can then refer to circuit elements by their position in the PPL array. An added feature of the 
PPL simulator is that the information stored in the simulator's internal representation of the 

_   ^. 
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circuit interconnect structure can be used for additional circuit checking unique to the PPL 
methodology. The end result is that ASYLIM is similar to conventional switctHevel 
simulators but ■vrith an extensive user-interface that allows the user to work with the drcuit 
at the symbolic PPL level, the same level he uses when designing. 

ASYLIM makes use of six~valu: d logic and uses a unit-delay timing model [1, 2]. The 
underlying circuit model primitives are switches but with extensions to allow for the 
simulation of certain entities as gates (flip flops and latches). It has been shown that the 
unit-delay model is adequate provided the circuit is free from races. Thus it can be used to 
model the sequence of drcuit activity [2]. 

An additional advantage of using ASYLIM over other simulators is that it contains an 
extensive interactive circuit debugger. The features of this debugger allow the user to view 
the circuit interconnect structure as constructed by the simulator. This is displayed in a 
readable format that allows the user to quickly compare the simulator's interpretation of the 
drcuit element interconnections and the intended design. This comparison uncovers most 
design errors relatively quickly. In addition, the simulator performs a pre-simulation 
plausibility check on the circuit's nodal structure. This feature (the idea borrowed from 
Bryant's M OSSIM [2] enables the user to find a large percentage of the design errors without 
ever going to the expense cf an actual simulation. This check identifies nodes with fanout but 
no inputs, inputs but no fanout, no path to either power or ground, or multiple pullup loads. 

V hile a logic cr switch-level simulation can provide an invaluable service in verifying the 
logic design, there are many features of a design that do not show up in a simulation run. For 
example, the ground node may be spedfied as an input to a transistor in a diagram but it 
requires an explicit check on the layout to ensure that ground adually has been routed to that 
device. In PPL design, these types of eledrical (non-logic) entities are included in the design 
using spedal cells. For instance, the power bussing structure is induded by placing power and 
ground buss cells around the circuit perimeter. In addition, other cells, like row and cokimn 
loads, are usually left of out of logic diagrams but must be induded for the drcuit's corred 
operation. ASYLIM checks for these cells as a part of its operation. 

4.7. Self Timed 1C Design with PPL's 
Another activity which has been funded by a private company and is cf importance in the 

development of the PPL methodology is the design of self-timed modules using the PPL cell 
set. The work is based on techniques developer, earlier [9] for realizing self-timed stored state 
sequential circuits. The original investigations were applied to off-the-shelf SSI parts. The 
present investigations are for the transfer of those ideas to large colledions (macros) of PPL 
cells for use in the design of self timed systems tc be contained on single integrated circuits. 
The investigations have led to further development of the PPL cell set to include methods for 
self timed circuits [11]. 

This research has resulted in a design discipline for self-timed stored state machines which 
has been developed using a conventional single rail Four Cycle signalling protocol. (State 
descriptions are encoded in PLAs represented in PPL.) The disdpline differs from that used by 
Carter [7] which uses a technique known as a 'one nit" scheme. The approach used for 
realizing the self timed stored state machines is based on two key developments: (1) A novel 
clocking circuit that generates a non—overlapping two phase dock cycle for an arbitrary size 
register, where the duration of the phi 1 phase of the cycle is automatically adjusted to the 
register size, and (2) A layout discipline for the folded PLA holding the state table, which 
guarantees that the inputs to the state register will be valid at the time that the dock cyde 
occurs. 

The method depends on certain properties of the NM 0 S PPL cell set, i.e. that row and dock 
wires are polysilicon, and that registers are formed by locating flip-flop cells such that their 
dock lines are serially connected. This method offers a designer the advantage that he need 
not concern himself with the timing details of a state machine design in order to assure that it 
will work. Assuming that the state table realized by the PLA is corred, that the rows and 
columns of the design are properly loaded, and that the proper interconnertions have been 
made (all of which can be verified with the PPL simulator [17]), the designer can be assured of 
corred operation of the state machine.    The prindple disadvantage of the method is the 

^_ — 
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overhead of the clocking circuit which must be associated with each state machine. 

I In addition to the self-timed stale machine design, the described design discipline [ll] has 
been applied to several interesting types of self-timed data-path modules, for example multi- 
bit latches and ripple-carry counters. 

4.8. Future CAD Tools forthe PPL Design Methodology 
t Our operational design tools should be enhanced.   The following agenda lists the tools we 

have identified as being an important part of a design system for this methodology and which 
we plan to develop: 

1. A Relational PPL Database Management System — This will allow the same 
software tools such as the editor and simulator to be used on PPL designs done 
using any spedfied integrated circuit technology such as NM OS, CM OS, I2L, and 

. GaAs.  In addition, it will provide a standard interface between the various CAD 
programs. 

2. A Symbolic Interactive, PPL Editor — this editor will be used to create a 
symbolic representation of a PPL circuit. It will be used interactively by a 
designer for the semi-automatic placing of PPL cells on the PPL grid. Because of 
the symbolic nature of PPL, many of the mundane design tasks can be 
automatically performed by the editor, leaving the designer free to concentrate 

I on logical design.    The editor will use either tablet or keyboard entry with 
simultaneous graphical representation of both the logic description and the 
circuit topology. 

3. Minimization of PPL programs — Development of a compaction program for 
compressing a PPL design by rearranging its symbolic description. Such a 
program will use heuristically driven artificial intelligence techniques to arrive 

| at a near-optimal solution to the minimization problem.   This tool will give us 
the capability of doing loosely packed PPL designs which can then be 
automatically compressed. This is a unique feature of the PPL design 
methodology and can be accomplished because of the symbolic nature of the PPL. 

4. Predefined Structured Logic Blocks — We are persuaded that circuits that 
already contain large blocks of ncn-PPL struciured logic should be designed 
using similar techniques to those presently used for the design of such blocks. 
For instance, if a random access memory (RAM ) is required in a circuit, it is more 
efficient, both frcrn a performance as well as a topclogical standpoint, tc actually 
dc a custom layout of the RA M . The PPL cell set can be extended to include very 
elementary' cells from which macro cells can be developed for any specific 
implementation of a RAM . Components generated by such an implementation, 
although not strictly PPLs, would be compatible with their PPL neighbors. A list 
of of structures we expect to implement as macros includes: 

nxm  ram 
nxm rom 
n-bit   ripple   adder 
n  b i t   fast   adder 
n-bit   priority  encoder 

- n-bit   register 
nxm  multiplier 
n-bit   comparator 
n-bi t   synch  counter 
n-bit  ripple  counter 
n-bit  by  m:l   HUX 

4.9. Observations 
Our research thus far has demonstrated the usefulness of the PPL methodology as a higher 

level design technique for hardware analogous to the use of assembly language for computer 
programming. The analogy has been extended by the introduction of ASSASSIN, a first- 
generation silicon compiler for speed-independent finite state machines. 

• 
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Our design system has proven useful for doing actual design of a variety of integrated 
circuits. It has reduced design times required by an order of magnitude. Resultant designs 
are easily simulated and corrected due to their symbolic repref-entation. System designers 
with little or no direct experience with integrated circuit design can do actual IC layout 

V. 
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6. Appendix 

Rd«-to-SI I icon   Project 
Ur. i vei-E i t y   of   Utah: 

DoD    Internet   Protocol    INn_DUT   submodule 

fid«   code    to-    the   body   of    task    ReaD_1nit_Parameters 
Version   of   October   25,    19S2 

separate   (Inin_0u t .Flodu I e ) 

f 

task body Read_inIt_Paraneters is 

— Recessed globals: 

-- numbar_of_local_net_types_of_Eervice: 
— local_net_type_o<_Eervice_table_ron_size: 
— tos_tab Ie : 

— Renamed task entry: 

octet_type 
octet_type 
octet_buffer_typj 

The   package   nernory_l1odule   containing   the   task   flemory   holds 
to-be-sent   datagrams   as   well   as    initialization   parameters 
needed   by    INfl_0UT. 

piocedlire nemory_r eques t ( 
requeEt_type_torm«I: 

chunk   cf_address_formaI: 

octet_<orm6l: 

renames flemory.Request; 

■   Local   variable   declaration 

menory.request_type ; 
— Load_addrdss or reee i ve_da t UIII_OC t• t . 

chunt;_of „address „type; 
-- Don't care when request_type_formaI 
— race i ve_da tu»i_oc t e t. 

out octet _t ype) 
-- Don't care when Ioad_address . 

— The following variable Is commented out. It 4ppeared only in the 
— "high-I eve I " used to read in the TOS table.  See below. 

number_of_toE_tabIe_octets: integer range 2 .. max_tOE_tab Ie_size - 1; 
octet_register: octet_type; 

begin 
loop 

accept Go( 
i n i t n um_f orma 

do 

bl tit 

response: out out„response) 

response := Eer;t_ok; 

-- For Carter's paper 
-- only; otherwise bit3 

-- fiIs o means i nIt _ok, 

--   Get    from    the   server   all    of    the   addr_chunks   needed    to    form   the   base 
--   address    in   memory   that   holds    the    Initialization   parameters   and 
--   sends   these   chunks    to   the   flemor-y   module. 
for   index   in   1    . .     init_num_for ma I 
loop 

accept Srv_req ( --   Get   next   address 
--   chunk   from   the 
--   Server   flodu I e . 

server_command_datuiii! srv „command; 
rasponte_to   server: out out„response) 

do 
neiiiory_requeEt( --Put   chunk   out    to   the 

— nemory module. 
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rtquts t_t ypt_<orBi« I =>   I o«d_iddP««« , 
chunk   o<   addr»«f _<or«« I    => 

Convirt_iPV_ccBimand_to_chunlt_of_addpei« 

(«trv«r_c<]iiimand„datum), 
= >  dont_cap«_ocl»t); oc 11 t_<opmaI 

end SPv_paq; 
end loop; 

initialization   papamattPS    (containad    in   tha 

--   nextS   octets   pecaived)    fpom   th»   riamopy   tlodula. 

for   i n d • x   in  1   • •    8 

—   Gat    tha   6    i nd i v i dua I 
--   n( 
for  i 
loop 

Remopy_Paquast( 
paquast   typa_fopmaI = >  pacaiva_datum.octat, 
chunk   oT   8ddpass_fopinai =>  don t _capa_X_da t L »i, 
oct«t'fop«-.al =>  octat_pagistap>; 

case  index   is 
when 1 
when 2 
when 3 
when * 
whea 5 
when E 
when 7 

= > 
= > 
= > 
= > 
= > 
= > 
= > 

I niii_max_pacKat. to 
I niii_max_pacl(e t . h I 
I nrr_addpeES_ length 

I nm_t i Bia_ou t. I o 
I nBi_t I lne_ou t. h i 
aclt_t y pe 

: = oc iet_peg istep; 
: = oc tat_peg i s tap; 
j = oc te t_peg istep; 
; = oc ta t_peg i s ten; 
:= octet _pegistep; 
; = oc tet_peg i step; 

when 8   = > 

end  case; 
end loop; 

--   Convert    the 
--   t i nie_ou t _i n 

local    net    type_o<_sepvice_tab Ie_Pon_sila 
: =   octe t_peg istep; 

numbep   of    I ocai_net_types_ot_sapvica 
: =    octat_pag istep; 

--   Read typ 

local    net    timeout    into   milliseconds.? 
milliseconds   :=    lnB_ti»e_out   /   1888.8; ■ 

    Left-hand   side   vaniable   declapad 
     In   Inn_Out_nodula.   Value    is   used 
     later    In   Oo_sand   ppoeedupa. 
    Note:   Davis   nevep   did   this   in 
 hit.   design.    Is   this   step   needed? 
    Kol    Ue   don't   need   this   step 
    since   the     quotient   can   be 
    approximated   by   a   div   by   2»»18 
.-    in   tha   even«    ue   need   to 
--    represent    milliseconds. 

e   of    service   tnanslation    table. 

The f oI lowing code i n 
"louep-level" vepsion 
implementation chosen 
for   a   multiplier. 

number_of_tOE_table_octets    : 

comments    is   peplaced   below   by   a 
that   closely   peflects   the   hardwape 
in   which   we   eliminate    the   need   fop 

local_net_type_of_$«pv ice.table.pow.sixe 
t   nuitiber_of_local_net_types_of_sepvicei 

-   Check    to   see    if    pequined   table   sire   exceeds   maximum 
if      numbep_of_tos.table_octets   >   max.tos_tab Ie_s.ze      then 

response   ;=   bad_srv_command; 

return; 
end    if; 

ton index in 
I oop 

numben_of_.-«_table.octets 

.da tum_oc tat, 
nemopy_peques t t 

pequest    type_fopmal =>  receive, 
chunk   of   addpess.fopmal    =>  don t_cape_X_da turn, 
octeOopmal =>   t os_t ab la ( i ndex) ) ; 

end   loop; 

i 
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declare 
row.number:    integer   range 8   ..   number_o<_loc«I_net_types_o<   ».rvict; 

col   number:    integer   range 8   .. 
loc«l_net_type_ot_service_table_rou_size; 

index: integer   range 8   . . 
nuniber_of_loca l_net_types_ot   Bervice 
•   local_net_type_o<_service_table_roH_»i2« 

--   Outer   loop   reads   all   rowi   o(   TOS   table. 

begin 
row_number    :=    8; 
loop 

col   number    :=    8; 
j0 _.   Inner    loop   reads    in   one   row   o<   TOS   table. 

nemory_reques t ( 
request_type_f orma I => r ece i ve_da t uir_oc t e t , 
chunk   oT_address_f orma I => don t_care_X_ca turn, 
octetlformal => t os_t ab I e ( i ndex ) ) ; 

col    number   :=    col_number   +    1; 
exit" when co I .number   =    I oca I _ne t _t ype_o<_Eerv i ca_t ab I e_rou_s ire; 

i ndex    : =     index    +    1; 
if     index   >   Kttx_toE_t ab I e_s i ze      then 

response   :=    bad_Erv_coii.mand; 
return; —   Exit   the   current   accept   statement. 

end if; 
end  loop; —   E"«1   inner    loop. 

row   number    :=   rou_number    +   1; 
exilTwheD  row.number    -    number_o f _ I o ca I _ne t _t ypes.o < _ser v i ce ; 

end  loop; —  End   out,r   looP- 
end; 

end 0 o; 

end  loop; 

end Reati_In i l_Parameters; 

— End dec I are b I ock. 

— End of in it processing. 

-- End of outer-most (inifinite) 
-- Ioop. 

i*~~''"'- _ 
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ASSASSIN: A CAD System for 
Self-Timed Control-UmtDesign 

Tony H.Carter 
D epartment of C omputer Science 

University of Utah 
Salt Lake City. Utah 84112 

October 1962 

Abstract 

Many software systems exist for automatically implementing synchronous state-machines. 
Presented in this paper is a software system — ASSASSIN — for the design and automatic layout of 
self-timed (or speed-independent) control-units as integrated circuit modules. ASSASSIN provides 
for the editing of textual descriptions of control-flow, the functional simulation of speed-independent 
control-units, and the automatic layout of the implementation as a Path-Programmable Logic (PPL) 
program. ASSASSIN uses a well-known technique (a one—hot stale encoding) for implementation of 
the control-unit. Examples are given illustrating the specification and implementation of simple 
state-machines. In addition, the design of a slate-machine of interest in the University of Utah's 
A da-to-Silicon project is carried out A portion of the A da code for the "Output Side" of the Inter— 
Net-M odule (INH_ OUT), which will eventually be fabricated as part of the A da-to-Silicon Project, is 
converted by hand to ASSASSIN input format and from there to an integrated circuit layout by 
ASSASSIN, thus illustrating the use of ASSASSIN in the context of the A da-to-Silicon ProjecL 

This work was sponsored in part by the Defense Advanced Research Projects Agency (DARPA) 
under contract number H DA 903-61-C-0414 . • 

1. Introduction 
The development of CAD tools for integrated circuit design has exploited a vast body of knowledge 

about synchrone JS computing systems. Old and new integrated circuit .■chnologies have been well- 
suited for implementing synchronous computing systems. The success of these synchronous systems 
has been prodigious as witnessed by the recent booms in the manufacturing and purchasing of com- 
puting systems. Current research in semiconductor devices is rapidly heading toward the ability to 
construct computing systems which operate orders of magnitude faster and which are far more com- 
plex than those currently available. ASSASSIN treats part of problem of designing self-timed sys- 
tems. 

W ith projected room-temperature speeds of logic devices n.nging down to tens of picoseconds of 
delay time [3], it appears that the postulate advanced by Seitz in Chapter 7 of Introduction to VLSI 
Systems [7] will be borne out. The contention is that the current methods of system synchronization 
(global clocks) will result in unreliable circuits as device speeds increase and as device switching 
energies decrease. 

If Seitz is indeed right, the newer and faster integrated circuit technologies will require computing 
systems to be implemented using something like "Self-Timed" or "Speed-Independent" logic. In 
these types of logic, only sequence is of concern. The actual gate and wiring delays will not affect the 
function, only the absolute speed. It should be noted that any asynchronous device requires that the 

'A de is B ragiftared trademark of the U.S. Covamment, A da J oinl Program 0 flioe. 
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suirounding environment to be suitably conditioned so as to tolerate the "un-synchronized" actions 
of the device. 

M uch work has been done in the implementation of synchronous structures in integrated circuits. 
CompuUng systems can be divided into two main parts: control and data-path. Universities and 
mdustiy alike have produced many methods for generating synchronous system control, some using 
the PLA. V ork has and is being done in the automatic generation of synchronous data-paths f9] 
V hile there have been some successful efforts to construct self-timed or speed-independent comput- 
ing systems such as DDH 1 [2] and ILLIAC II [6]. there has been very little work done on the im- 
plementaUon of self-timed computing systems in integrated drcuits. This may be because there 
were few integrated circuit implementation strategies which readily lent themselves to the construe- 
uon of self—timed circuits. 

.cTT^erdT,0Pment ^ ^^«««^W« Lofiic[l] (PPL), a derivative of the Storage/Logic A rrey 
(SLA) [lOj. has proven to be of great value in the generation of self-timed control in integrated 
circuits. ■ 

ASSASSIN is part of a research effort, being pursued at the University of Utah, to convert Ada 
programs into integrated circuit implementations. ASSASSIN transforms the control portions of Ada 
programs into their corresponding integrated circuit counterparts. In addition. ASSASSIN ft] 
provides a software tool for the specification, simulation and compilation of self-timed control-units 
to integrated circuit module layouts. As such, it begins to treat some of the low-level problems of 
self-timed systems design. It uses PPL as the integrated circuit implementation strategy and a 
one-hot encoding of the control states [4] as * mapping from the specification to the drouit 
implementation. It allows an implementation independent spedfication of control (that is inde- 
pendent of fabrication technologies and drcuit implementation techniques), and provides functional' 
simulation capabilities. Layout generation (analogous to the software compiler oo*) generation) : 

results in self-timed drcuits which functionally match the results of simulation. ASSASSIN also 
provides a single, convenient user interface for all of its functions. 

2. The Specification of Control: Syntax 
The spedfication of control for a given drcuit can result in a labelled, direded graph similar to the 

one in figure 2-1. There are named nodes which are called states and labelled directed arts whidi 
are called transitions. Assodated with states are operations on output variables. These operations 
may be fundions of only the state, or they may be functions of the state and a boolean function of a 
set of input variables. Transitions are labelled with a boolean funrtion of members of the set of input 
vanables which dictates the condition upon which that transition will take place. Transitions may 
also have associated operations on outputs (M ealy M achines). 

The ability to spedfy stridly sequential control is certainly essential.  Although our current un- 
derstanding of concurrent processing is very limited, the ability to handle concurrent paths of control 
may also prove to be useful as our understanding increases.  Concurrency (in the context of control) 
can be interpreted in two ways.   The first is where two separate machines operate independently 
communicating via some signalling protocol.   The second is where a single machine performs some 
types of concurrent processing by having concurrently executing control paths.  The firet is handled 
oy having control-units composed of multiple state-machines. In terms of graph«, this implies that 
one can draw many separate graphs, whose» interconnection is implied by output and input variable 
names.  The second is handled by allowing, within a single state-machine, some notion of forking to 
begin concurrently executing control paths and a notion of joining to terminate concurrently execut- 
ing control paths. The addition of the concepts of FORK and JOIN to the graph model of control-flow 
is illustrated in figure 2-2. 

Output generation from a control-unit can be either enduring or ephemeral.   Enduring outputs 

2 
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Figure 2-1:  A Simple Control-Flow Graph 

are latched and operated on by SET and RESET only. W hen an enduring output is SET it will 
remain on until a'RESET operation is performed. Ephemeral outputs are gated and remain on only 
while the required condition is met (either residence in a state or execution of a transition). They are 
operated on by H 0LD. 

Figure 2-3 contains a control-flow graph which contains all of the features induded in the discus- 
sion above. States are represented by rectangle» with the name of the state indicated in the upper 
left comer, follovfed by a colon. Output generation is indicated by a right-arrow. To the left of the 
right-arrow will be a boolean expression and to the right the operations to be performed and the 
names of the outputs which are to be operated on. For example. State B contains three output 
operations. The first is unconditional (it depends only on the state of the machine) and causes the 
ephemeral output "01" to be held true. The second is conditional (the boolean expression is "13") and 
causes the enduring output "03" to be SET. The third is also conditional (the boolean expression is 
"14 OR 15") and causes the ephemeral outputs "02" and "05" to be held true and the enduring output 
"04" to be RESET. 

Also required in the specification of control is the concept of an initial stale. In the graphs, this is 
indicated by the arc labelled M asterResel which has no state node at its tail. 

In summary, the specification language for control should indude the following features: 
-the concept of an initial state. 

—simple transitions from one state to another (M OVE). 

—transitions from one state to many states (FORK). 

—transitions from many states to one state (JOIN), 

-outputs controlled only by residence in a state or by the execution of a transiUon. 

-outputs controlled by a boolean combination of inputs AND by residence in a state or by 
the execution of a transition. 
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—arbitrarily complex boolean expressions for conditions (controlling transitions and output 
generation), 

—lambda transitions (where the condition is the tautology TRUE), 
—ephemeral outputs, 
—enduring outputs, 
-multiple and varied transitions from a given state, 
—multiple and varied transitions to a given state, and 
—multiple state-machine control-units. 

The task now is to codify the points listed above, such as in a grammar in BNF. It must allow far 
all the points listed above while limiting its expressive power to those points. The language must be 
easily parsed and it is desirable that parser generators be used to generate the code for the parser. 
A bove all, the language should be concise and intelligible to design engineers. 

The complete BNF for the language (which is called CUDL) is included in Appendix I. The lan- 
guage has the ability to represent each of the points listed above. There are four types of blocks In 
the language. The first is the CONTROLUNIT block. This block indicates the name of the overall 
control-unit and certains STATEUACHINE blocks. It also indudes the specification of "global" input 
expressions which assign boolean expressions to an internal variable which can significantly reduce 
the size of the code written to describe the control-unit. The names of "global" inputs can be used In 
the descriptions of transitions and output generation. Figure 2-4 contains the CUDL code describing 
the machine whose graph is in figure 2-3. 

centrolunit CeapilaTaitS: 

inputs: SIC is II and (12 or not 13); 

■alftlaad ctataaaehina TaitSi 
startctata fl: 

forkon BIG to B,Cj 
Movaon NOT BIG to D; 
hold 01,02; 
rasat 03; 
tat 04; 

and; 

ttata Bi 
Joint C on 14 AND IS to F; 
Joint E on 14 OR IS to F; 
hold 01; 
if 13 than tat 03; 
If 14 OR IS than bagln ratat 04; hold 02,05; and; 

and; 

ttata Cs 
■ovaon NOT 16 to E; 
Joint B on 16 to F doing bagin ratat 03; 

If BIG than tat 04; and; 
hold 01; 

and; 

ttata Oi 
novaon 17 to F doing tat 03; 

and; 

ttata Et 
Joint B on TRUE to F; 

and; 

ttata Fi 
•ovaon IB to fl; 
■ovaen NOT IB to 0; 

and; 
andj 

and. 

Figure 2-4:   CU D L Code for the Graph in Figure 2-3 

• 
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Eventually, given an appropriate display device, a graphical versicn of this language coidd be 
developed and the specification of control could be done in terms of "ntroMlOTJ™plu ^^^ 
textual description of the graph. A project is underway to implement such a front end to ASSASMK 

on an A polio D 0 M A IN computer. 

3. The Simulation of Control: Semantics A 

Given that the syntax of control-unit specification Is defined, the designer must dso understand 
the semantic* in order to use the system.   The semantics of control is directly influenced by the 

, tmplementation strategy selected   Since the specification of control should allow for concurrency 
within a given state-machine, a scheme which allows the implementation of such concurrency must 
be selected. The notion of concurrency eliminates the possibility of completely and uniquely encod- 
ing the state variables. The one^ot implementation scheme (completely decoded) allows for easy 
implementation of concurrency. The following discussion is largely based on the assumpüon that a 
one-hot Implementation Is used 

The specification syntax described In the previous section can be Interpreted in three »^ ™ 
Interpretation depends on the particular mapping strategy being used in the compilation The three 
possible types of mapping are synchronous, asynchronous, and self-timed. In order to allow to all 
three Interpretations to be eventually simulated and compiled, the language Indudes the "ncept of a 
stat«nachlne type. The choice of a state-machine level semantic Interpretation s made expl dt 
through the use oVthe keywords: SELFTIUED. ASYNCHROKOUS. and SYNCHRONOUS.JnJhi^ way. the. 
u£ L spedfy various types *f control using the same system.   Only .the SELFTIUED opüon is 
currently Implemented In ASSASSIN.       .       • .. '   , t *  

The simulation of self-timed control can be functional in nature.   This funcüonal «nmlaüon. 
provides knowledge about the sequential function of the drcuit   Since the J^T"^»^ . 
dmUt is such that If sequence Is ccrred. iunctlon Is corred. the user Is sure that the circuit will 
work If the environment In which he places It Is conditioned to Interart In a self-timed manner with 

the control-unit. .      .. » _ AmimtimA 
The simulation of synchronous and asynchronous control really requires the use of a detailed 

timing simulator. This simulator must be able to make accurate delay calculations based on van- 
able gate delays. In the world of the Integrated drcuit. these delays may or may not be ea.-'ly 
LlLated sincTlong wires and heavy loads will significantly alter the ^«^ rf «^^ 
Thus, the problem of simulation for these types at systems Is much more difficult that for the «»If 

"To'i^t the semantic adions of the control-.nit. one must know first the adions to be taken 
to execute a transition and second how outputs are generated. Transitions are ^^ ^ 
change the internal state of the machine. Although there may be many ^°" J»*^ 
leaving a given state, it should never be possible to execute two ^™^ ™^\t™** 
same state Since the control^nit has no control over the .equence of arrival and the ^ * *« 
inputs that trigger transitions, the problem of having two transitions executed ^u'teneously Is 
nLently a dynamic one and its avoidance requires a detailed knowledge of the -^^\to 

Uld. the control-unit is to be placed. If two transition were executed f1«1*^^^ 
would be a state^nachine whid: would be In two sequential and mutually exduslve states at the 

"TheTree Interpretations of control have somewhat different vl^s of ^lüons. T^o^ 
implementation uses transiüons that are essentially handshakes between logically »^ ^ 
S chamderisüc can be portrayed by a "token^assing^iachlne". with P^«r«-* ^ 
controlled splitting and recombination of tokens (FORK and JOIN). In a translücn »J^» "£•* 
Td state B state A will first set state B and then state B will reset stete A. Consider the case (figure 
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3-l)whereamadiineoontainsfoursequentialstatesA H r«T,Hr,  A 

r.r^ -rr: r^r r ■■ "•"-"" •," ** ^ - • •- -«• ^ -«- - 
iiltSTX^ ""T ""'"^ i,"^,«U- "' -"« «™n- .h.t t. do .bout Uü, 

Lookin£ from inside the control-unit, there are two types of outputs   The flnrt I. «,. «V. 
6ated output. It is turned on oniy while the ^ro^JZJ^L^Tel^ t^Z 

rivei JL oT7his 'T of output is a3iitroiied by -^ - ™ > ^r«i^fx level is maintained even after the appropriate condition has disappeared  It is pcBsible hZ~Z \ 
place a latched output in a metastable condiüon by trme to set arr-Tu M  V, I ' 
care must be taken in working with latched output " ^ ^ "** ^ S0 ^ 

tJ^ir™"011*0!- ^^ ^ a 00ntro,-unit is ^«y conditional upon something W hat we 
tenn as an unconditional output is an output that depends only on being in a narticZ^Lf! 1 o! 
on a particular transition bein« executed V hat w* Um .. on oeing m a particular state or only 
,f«fD«^»~ •.• u . ,8fiatwelennasacondltionaI output depends not only on state or trens.Uon. but also on a boolean combination of input variables * 

of a^sitlr1 T^ T 0PTted 0n immediate,y W» entry into a state or upon the execution 
of a transition    Also, ephemerel outputs which are unconditionally operated on from a stl or 
trensiUon must be released when the state is left or the transition is JmpTeted ' ^ ^ " State ^ 

Conditional outputs are operated on when the enure condition becomes true indudln, entry to a 

longer met or the state is left or the trensiUon is compTet^ ^ ^^ ^^ iS n0 

( 
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Bemuse of the handshake going on between logially adjacent rtates. the« is a small amount of 

toTe 0 RT^ ^ll8 leßally in 52 StateS ^ ^ ^ Uia* ThiS all0WS f0r ePheme«» output, to be ORed in a ghtch-free manner between logically adjacent states.  Enduring outputs controUed 

^T* M]T f ."" ^ " Pr0blem " b0th a *•* ^ reset are attemPted «» ** »^e üme - the output latch wall temporarily be placed in a metastable state, possibly advemdy affecUmj the 
surrounding 'envirgnment ««« «w 

In ASSASSIN, there is no implicit communication between any two state-madüne, spedfied a, 
part o the same control-^nit All such inte^tate-maAlne communicaüon is accomplished by 
exphcit signalling protocols ucing inputs to and outputs from the state-machines. 

4. The Implementation of Control 

The actual physical implementation of control depends on two factors: the drcuit implementation 
techruque and the control-^nit implementation technique. The circuit implementation technique 
should be picked so as to make the physical realization of the contrd-^it implementation technique 
as simple as possible. ~"uHuc 

The selection of a control-unit implementation technique depends on the set of features to be 
implemented. Thus employing FORK and JOIN prohibits using a monolithic completely encoded 
control-^mt. Including FORK and JOIN in a control-^nit implementation technique «quires either a 
very complex strategy for splitting out the concurrent secüons of the control into physically (and 
perhaps logically) separate sections, a partially encoded scheme whero the sequential control secüons 
are encoded and the concurrent are not. or a completely decoded machine. The one-hot implemen- 
tation is a completely decoded scheme in which FORK and JOIN are easily included. The tradeoffs 
involved m selecting the one-hot strategy are discussed by Hollaar [4] " • 

Basically, the one-hot strategy involves the use of one latch for each state, two gates for each 
transition, a latch or driver for each output, and one gate for each condition controlling conditional 
output, from a given state or transition. For complex machines, the automatic full^custom layout of 
a one-hot control-unit could be very difficult. 

Path-Programmable Logic provides a very regular structure that is particularly well suited for 
implementing one-hot control-^nits. In the mapping of control onto PPL using a one-hot encodimj a 
single latch is used for each stale variable. Each transition maps to two PPL row segments, one'to 
set the next stale and the other to reset the current state once the next slate has been set In 
addition, complex boolean conditions on transitions (or on outputs) may require the introduction of 
temporary gates. In PPL. the AND of several inputs is detected on a single row. The OR is formed 
on the columns. For this reason, extra PPL columns containing temporary variables must be in- 
s«-ted for forming the OR terms of boolean expressions. Outputs are controlled by using a single 
PPL row to dnve all the unconditional outputs oontrolled by a state or a transition. Each separate 
condition for controlling conditional outputs uses a single PPL row. 

4.1. The Implementation of Control: Floor Plan 
W ith the basic mapping strategy defined above, we soon see that there are many ways to spedfy 

the global organization or floor plan of the oontrol-unil. The one selected for use in ASSASSIN was 
chosen because it appears to be simple. This floor plan (see figure 4-1) has the state latch«, tarn- ' 
porary variable inverters, and input inverters in a single band across the middle of the controMinlt 
Output latches and inverters are placed In a band across the top of the control-unit Inputs airive 
from the bottom of the control-unit and outputs are emitted from the top of the control-unit This 
stacking of inputs and outputs results in a significantly smaller area and is a direct consequence of 
usmg a PPL-Iike structure for the drcuit implementation.  State transiUons are generated in the 
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bottom half of the control-unit and boolean expressions and outputs are generated between the itatc 
latch band and the output band It is possible to make other area optimizations in the PPL layout of 
one-hot control-units. 

Output Latches and Gates 

Boolean Expressions 
and 

0 utput Generation 

State Latches, Input/Temp Gates 

Transitions 

Figure 4-1:   Global Organization of ASSASSIN Output 

This global organizatioii results in a simple PPL generator that needs no routing tools for con- 
structing the control-unit A11 the PPL generator has to know is which cells to place and where to 
place them — an easy problem when compared with routing. 

4.2. The Implementation of Control: Code Generation 
W e have now almost fully specified the entire system. Ail that remains is to actually construct 

algorithms for generating PPL programs that implement the control-unit. The self-timed control- 
unit requires the use of latches for representing states. These latches must indicate their change in 
state after the set or reset signal has arrived. The PPL cell designed for this purpose is the four-wire 
latch. It contains cross-coupled NHOS inverters for the latch with inverting-buffered outputs. 
Thus, this cell cannot signal its change in state until after the latch has changed state. ASSASSIN 
can currently generate either a GIF description of the control-unit or a file written in 
Computervision's CADDS2 External Data Base format. 

The transitions for a self-timed control-unit require two row segments. The first senses that the 
machine is in a certain state — say state A, thai all possible predecessor states (states which could 
have caused a transition lo state A) have been reset, and thai the condition for the transition is met 
If all these conditions are met, the latch for the next state is set. If there are outputs controlled by 
the transition, an inverter is used to appropriately control output generation from the transition. 
The second row segment detects that the next state has been successfully set and resets state A. 

Figure 4-2 illustrates a simple transition between two states. The machine is in state B, having 
come from state A. State A has been reset. The first row below the state latches performs the 
"forward" transition, or setting of the next state. The '0' under the latch for state A detects that state 
A has been reset The '1' under the latch for slate B detects that slate B has been set. The '1' under 
the inverter for input 11 detects that the input condition has been met and the 'S' under the latch for 
state C will set state C when the transition occurs. The second row performs the "reverse" transition, 

10 
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or the resetüng of the previous state. The T under the latch for state C detects that state c 

ÜlJd   r    ^t   Xlatdl f0r ^ B ^ ^ 8tate B when the ^^ f^tion completed. CompleUng the operations of both these vans constitutes a complete transition 

has been 
has been 

I til I l 
I mil l i 
I A I I I B I C I 
I 11121 I I 
I       III        I       I 

i   t   t   i   i   t   t   i 
10—P-l —1—SI 

i   >   t   i   i   i   i   t 
l-l-l-l-IR —P-ll, 

Figure 4-2:  A Simple Self-Timed Tranaiüon 

Asynchronous transitions are different from self-timed transitions in that they do not sense that 
£ ecessor stat^ have been «set. If gate delays are suffidently non-unifonn. Jl^LlZ^ 

^trol as'inT     TT mTer W0Uld n01 fUnCti0n Pr0perly-  FiBUre ^ show the -»• "OU« of control as in figure 4-5. implemented asynchronously. 

( 

C 

I       III       I       I 
i     inn     i     i 
I   A   )    I    I   B   I   C   I 
I        11121        I        I 
I     III     I     I 

I   I   *   •   I   I   t   I 
l-l-l-ll-P-l—si 

I   I   t   I   I   I   t   I 
l-l-l-l-IR—P-ll 

Figure 4-3:  A Simple A syndironous Transition 

Synchronous transitions are implemented the same as asynchronous transitions, with the excep- 
tion that the state latches are replaced by docked flip-flops. This is illustrated in figure 4-4. 

Ill I 
III I 
III I 
III I 
inn i 

A   I    I    I   B   I 
-1-2- 
III I 

C   I 
Phl2 

III I 
III I 

• •   i   i   t   t    i   i 
-l-l-ll-P-1—SI 
* i   •   i   i    i   i   i 
-i-i-i-iR—p-n 

- Phil 
I 
I 

Figui'e4-4:  A Simple Syndironous Transition 

BdwSr^ ^T138'011 eXplainS ^ ASSASSm "W™?* °f «M the constructs described by 
figS TLX^PnrSr fT ^ ** ^^ "^^ ^ose flow-graph is contained in 
examlh.     ^^ Code for ^ control^nit is in figure 2-1. The complete PPL program for this 

Program R^s '^ ^ ^ ^^ ^^^ ^ ^^^ Contain Porti^ <* "ü, PPL program. Row segments are referred to from left to right in a given row.  Row and cdumn numbers 
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are as labeled in the figures. 
Figure 4-6 illustrates the compilation of a move transition (from state A to state B). Row« 17 

through 19 contain the state latches, input gates and temporary gates. T1 contains "12 and not 13." 
T2 contains "14 or 15." T3 indicates that the JOIN transition from states B and C to state T is cur- 
rently being taken. T4 indicates that the HOVE transition from state B to stete F is being taken. 
Row 15 is the forward transition from state A to state B. It senses that state \ is active by the T in 
cdumn 1. that "BIG" is false by the "0' in columns 2 and 3. and that state F ^ inactive by the •O* In 
column 22. State B is made active by the 'S' in column 17 and the row load is the 'P' in co!unm 11. 
The reverse transition in row 14 simply senses with the '1' in column 17 that state B is active and 
resets state A with the 'R' in column 0. 

Scale-of-two loops pose a particular problem. It is possible to get stuck in both states, with no 
way to get out. Spale-of-two loops therefore require some sort of mutual exclusion on transitions to 
avoid this problem. Figure 4-7 illustrates the compilation of a scale-of-two loop. Row 5 contains 
the forward transition from state B to state F. Note the 'O's in columns 0 and 22 which detect the 
predecessors to state B. The '+ ' in column 18 is used in generating the outputs associated with this 
transition by driving T4 when the transition is in progress. The right segment on row 12 resets state 
B after the forward transition to state F has been finished. Note the '1' in column 19 which senses 
that input 18 has not yet become false. This gives the required mutual exclusion of input signals in a 
scale-of-two loop. Row 4 contains the forward transition from state F to state B. The '0' in column 
19 detects the false slate of input 18 and the other 'O's detect the inactivity of the possible predeces- 
sors to state F. Row 4 contains the reverse transition associated with the transition from state F to 
state D. The "O' in column 15 senses that input 17 is currently false. 

Figure 4-8 illustrates the FORK transition from slate A to slates B and C. Row 13 contains the 
forward FORK transition. It senses the state A is active, that state F is inactive and that input BIG is 
true (the "l 's in columns 2 and 3). It also sets both states B and C. The reverse FORK transition is in 
the left segment ot row 12. It detects that both'states B and C hpve been activated and resets state A. 

Figure 4-9 shows the JOIN transition from states B and C to state F.   Row 9 implements the 
forward transition by sensing that the predecessor state (A) is inactive, states B and C are active, 
inputs 14,15 and 16 are true, and by setting state F. The '+ ' in column 14 is used for generating the ■ 
outputs associated with the JOIN transition from state C.  The reverse transition is implemented in 
row 8 where the activation of state F is detected and states B and C are deactivated (reset). 

Figure 4-10 shows the compilation of the input boolean expression BIG -11 and (12 or not 13). The 
leftmost row segments on rows 20 and 21 (1+ -1-P1 and 1+ -P-01 respectively) compile the subexpres- 
sion "12 or not 13." The '+ ' in column 3 generate the OR of these two rows into Tl. 12 is sensed by 
the T in column 4 of row 20 and "not 13" is sensed by the '0' in column 5 of row 21. To sense "BIG", 
the program must contain Ts in both columns 2 and 3. To sense "not BIG" it must contain 'O's in 
both columns 2 and 3. 

Figure 4-11 shows both conditional and unconditional output generation from states and tran- 
sitions. Row 22 implements the unconditional outputs controlled by state A. The 'V in column 1 
senses that state A is active. The '+ 's in columns 6 and 13 implement the "HOLD 01.02;" 
statement, the 'S" in column 17 implements the "RESET 03" statement and the T?' in column 10 
implements the "SET 04" statement. The 'S' is used to reset a LATCH2 PPL cell and the 'R* is used 
to set it. Rows 24 and 25 implement the conditional outputs controlled by state B. Row 24 detects 
the "14 or 15" condition arid HOLDs 05 and 02 and resets 04. Row 25 detects the "13" condition and 
sets 03.  The last row segment on row 20 (ll-P SI) implements the unconditional output (03) 
controlled by the JOIN transition from states B and C to F. Row 26 implements the "If BIG then set 
04" statement from the J0IN transition in state C. 
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Figure 4-6:  Sample PPL Program 
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Figure 4-6:   Compilntionof theUOVE TransiUon 
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Figure 4-7:   Compilation of the Scale-of-Two Loop 
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Figure 4-6:   Compilation of the FORK Transition 

5 The Assassination of a Contnol Unit 
This section illustrates the complete design of a non-trivial state-machine. The control-unit to be 

desißned comes from the Ada-tc-Silicoii Project underway at the University of Utah. This project 
has as one of its objectives the automatic transformation of Ada programs into hardware implemen- 
tations using integrated circuits [5].  The Ada-to-Silicon project is using the Internet Protocol (see 
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Figure 4-9:  Compilation of the JOIN Transition 
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Figure 4-10:   Compilation of Boolean Expressions -BIG 
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Figure 4-11:   Compilation of Outputs 

IT£ mraS I ^ Veh!de-  The Intemet Pr0t0C01 haS "^ de^P^d into three communiceüng 
hardware (and software) submodules [5].  Figure S-l illustrates this division.  The protocol conai^ 

15 



ASSISSM 

of N mu _ m submodules. each of which receives transmitted data and assembles datagrams from a 
single local area network. N INU.OUT submodules. each of which appropriately fragments and 
transmits datagrams to a single local area network, and a single INM . SRV submodule that lateriaoss 
the N IN«. OUT and N INH.IN submodules to one or more host compute™. The complete Ada oodp 
describing the INJI.OUT submodule has been written and compiled and wilUi presented in . 
forthcoming report. 

.c: 
JHKJK 

lUglni 
tm 
(«A«) 

<sSsä> 

^Ä 
INN OTT 

UN U 
nl 

»tpam 
bufftr 

(MHJ 

pttMur 
Ubl. 

(RAH) 

UMOUT 

Figure 5-1:   Internet Protocol Hardware Submodules 

The INM-OUT submodule of the Internet Protocol has been selected as the initial test case 
Preliminary Ada code in the form of a complete task has been written and compiled. INM-OUT 
consists of three separate tasks. Main, Read. Init_ Parameters and Translate. TOS_ Table. Of 
these, the hardware architectural design has been completed for the Read. Init. Parameters task. 
Read. Init. Parameters deals with the initialization parameters of INU.OUT and loads various 
registers with data related to the transmission of datagrams through a local area network. Il- 
lustrated in figure 5-3 is a block diagram of the hardware implementation of this task. Professor Al 
Davis perfcned the mapping of the initial version of Ada code into a block diagram Several 
modifications have been made since that time. The block marked "Read. Init. Pars -FSH" is the 
control-unit derived from the Ada code for the Read. Init. Parametere task. Figure 5-2 contains 
the Ada code for a section of Read. Init. Parameters. The complete code is found in Appendix . 

Figure 5-4 contains the control flaw-graph for the Read. Init. Parameters task as extracted from 
the A da program. It should be noted that this particular flow-graph does not use the FORK and Jom 
transitions available in CUDL. Indeed. FORK and JOIN will probably not be used in implementing 
tasking, but may be used for more fine grained parallelism based on data independency. Ada accept 
statements are translated into_requt^t-ecknowledge handshakes with the appropriate module. 
These are indicated by the name of the accept (GO or SRV) concatenated with ".REQ" and "ACK". 
State RIPO is the initial state of the machine and sends initialization signals to several of the 
datapath modules in the environment of Read. Init. Parameters. Of particular interest, the signal 
INITNÜM.REC.LOD is held during this state. This signal indicates to the register holding the 
initialization number to watch the associated three-wiro bus and assume its value at all times. 
W hen this signal is dropped (in state RIPl). this register latches the value on the bus. The firat 
accept statement ("accept G0( ... ) ") is begun with the transition from state RIPO to state RIPl 

:■ 
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* 

I 

kit in 
los* 

• ec«pt   Co(     --  Ct«  OP  Cod«   fro«   Holn   (old  of  ho.ory  fiddr...) 
In I t.nu*. foraali bltli 

do 
>) 

A1«0   ■••n*    inlt.ol. roiponi«   is  ••tit.olci 
for   indo«   in  1   ..   inlt. nua.for■■! 
loop 

■ccttt Irv.roql — Proeosi naaorr Addraas 
aarvor.coaaond.dotuai     arv.coaaandl 
raaponaa.«o. aarvar■   out oul.rasponso) , 

do 
Raaorr.raquaat( -• put chunk oul to tha nmmory   aodul«. 

raauaal. trp«. foraal     => load.addraas. 
chunh, of. addrass. foraal => aarvar. coaaand. datua. 
aetat.foraal > > dont. cara. ectat) i 

and Srv.raqi 
and ]oopi 

— Cat tha ( individual in i 11 al itat ion parai>«tarB Icontainad In tha 
— naxt • octata racaivad) froa tho Haaorr hodula. 
fqr indax in 0 .. 7 
loop 

tlaaorr.raauaat ( 
raquaot.tj-pa.foraal B> raca I va. dat ua. oc t at . 
chunk.of.addraaa.fsraal -> dont.cara. X. datua 
aetat.foraal s> octat. raiistarIi 

eaaa   indax   la 
uhan   1 =>   Ina. aax.packat. lo 
Mhan   2 B>   Ina.aax. packet. hi 
uhan   S B>  Ina. addraaa. lanith 
uhan  4 B>  In«, t iaa.out. lo 
Mhan   S B>   Ina. t laa. out .hi 
uhan   6 B> ack.trpa 

tm octat.rasiatarl -- I bita 
IB octat.ratiatar i — ■ bita 
i« octat.ratiatar i — I bita 
■ B oetot, rat utar i — 8 bita 
<B octat.ratiatan — I bita 

octat.ratiatari   —   1   bit 
uhan   7   B>  local, nat. t ypo. o f. aor v i c«. t «bl a. rou. a i la 

■ B  octal.ratlator )   --   I  bita 
uhan   e   B>  nuabar. of. local, not. trpa«.of. aar vita 

'B   oelat. ratistar i   --   I' bita 
and  caaal 

and   loop; 

••   R«»d   in   t^po-of-aarvica  tranalation   tablo. 

daclara 
rou.nuaban    intatar   ranta   6   ..   nuabar. of. loca 1. n«t. 1 >.pai. of   aarvlcal 
col.nuaban    intatar   rant«  *   ••   locol,not. 1rpa.of.aarviea.rou. alaai 

Indaxi 

-- Outar loop nodi all roua of TOS tobla. 

— Innar loop roads in sna rou of TOS table. 

intotar ranta • .. nuabar.of. local.nal.trpaa.of aarvlea 
« local, not. t cpo. of. aarvi ca. rou. a i ta 
i B ti 

bat in 
rou.nuabar ■ = «i 
loop 

col. nuabar ■B 0i 
laop 

naaorp.raauast ( 
raauost. trp«. f'ir««l     B> r«caiv«. dat;. .octal . 
chunk.of. oddross. foraol => dont. cor a. X. datua . 
aetat.foraal => loa. lablaf i nda« I) i 

cel.nu«b«r IB col.nu«b«r + 1; 
axil uhan eol.nuabar B locol. not. trps. of. aarvica. rou. a na I 
Indax i B indax 4- 1 i 
If  index > «ax,tos.tsbla.ails  thsn 
rasponso IB bad.arv.coaaondl 
roturn) -- Exit tha currant accept ataleaont. 

en d i fI 
end loop) -- End inner loop. 

rew.nuabsr is rou.nuabar + li 
exit uhan rou.nuabar B nuabar. of. l^pes. of. service; 

end loopl -- End outer loop, 
•ndl -- End declare block. 

•"<' &" -- End of init proeeaaint. 
and loop) — End of outer-eoat linfinit«) loop, 

end Reed.Inlt.Paraaalerai 

Figure 5-2:  ADA Code for Rea<i_ Init- Parameters 

Note that the oondition for the transition indudes, in addition to GO.REQ. INITNUM .REG.DON and 
INITNUH.CTR.DON. The madiine cannot proceed until it is sure that the initialization number 
register contains the correct value and the associated counter has been reset. In state RIPl, the 
machine begins the second accept loop. W hen the SRV.REQ signal arrives, a transition is made to 
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INM-SRV MODULE 

TYPE OF SERVICE RAM 
<H UOQS BY I BJTS) 

Figure 5-8:   Block Diagram of Read_ Init_ Parameters r 
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rißure 5-4:   Control F] W-Graph for Rend. Init. P.ra.nete™ 
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state RIP2. where the counter is incremented (indicating that another byte of address is to be trans- 
mitted to the memory module), and a request-acknowledge handshake is performed between 
READ- INIT- PARS and the memory module. The signal MEM .SEND indicates to the memory 
that it is to receive data. W hen the counter has been incremented (INITNUM .CTR.DON) and an 
acknowledgement from the memory (M EM.ACK) have been received, a transition is made to state 
RIP2. State RIP2 terminates the handshake with the 1NM_ SRV module by asserting the signal 
SRV.A CK. Once both SRV.REQ and H EU .ACK have been lowered, the output of the comparator 
between the initialization counter and register is examined. One of the two transitions from state 
RIP2 is executed based on the value of INITNUM .CMP.EQ. If INITNUM .CM P.EQ is on. the in- 
itialization loop is terminated. If it is off, the initialization loop is continued. 

The memory module now has the complete address of the parameter block which needs to be 
transmitted to INU-OUT. State RIP3 begins an interaction between the memory module and 
Read_ Init_ Parameters that loads a set of registers appropriately. The handshake with the 
memory module is begun by holding HEM .REQ. At the same time, the register counter (which was 
initialized to 7} is incremented (and is now 0). W hen an .acknowledgement is received from the 
memory (M EM .A CK), and the register counter is finished counting up by one, a transition is made to 
state RIP4 where the signal REG.DECODE.ENA signals the appropriate latch to gate in the value 
from the memory bus. MEM .REQ is left on here so that the valid data on the memory bus does not 
disappear before it can be latched. W hen the appropriate register signals that it has the data loaded 
(REG.ACK), a transition is made to state RIP5. W hen the memory acknowledges the termination of 
a transmission cycle (not HEM.ACK), a comparator with the register counter is made to see if all 
required registers have been loaded (REG.CTR.EQ7). If not, the loop is repeated, incrementing the 
register counter each time. If so, a transition is made to state RIP6 and the processing of the Type- 
of-Servioe (TOS) table is performed. , • ; ,      . 

The type-of-service table is to be a linear array of registers (or ram cells), indexed by row and 
cduinn. Initially this indexing was done via a multiplication (in the Ada code). It was replaced with 
a doubly nested loop to make the hardware implementation easier' and more straightforward. In 
state RIP6, the type-of-service column counter and type-of-service address counter are incremen- 
ted. They were initialized to their maximum value in state RIPO. At the same time, a handshake 
with the memory module is begun (by raising MEM .REQ). When the memory has placed the data on 
the line and replied by using MEM.ACK. and when the two counters, TOS.COL.CTR and 
TOS.ADR.CTR have been incremented, a transition is made to state RIP7. Here the TOS table is 
signalled to load the value from the memory bus (TOS.REG.LOD). M EM .REQ is held high so that 
the data on the memory bus remains valid. W hen the data is in the TOS table, TOS.REG.DON is 
asserted and the next state becomes RIP8. This state terminates the handshake with the memory 
module. W hen the acknowledgement from the memory arrives, if all columns in the current TOS 
table entry have been processed, a transition is mad- to state RIP9 to proceed to the next TOS table 
entry. If more columns in the entry need to be proce^sd, the TOS.COL.CMP.EQ signal will be false 
and the transition from state RIP8 to state RIP6 will be taken. 

In state RIP9. the column counter (TOS.COL.CTR) is cleared and the row counter 
(TOS.ROW .CTR) is incremented. W hen these two operations are complete, the next state becomes 
RIPA where a check is performed to see of the entire TOS table has been loaded. If it has not, 
TOS.ROW.CMP.EQ will be false and the a transition occurs from state RIPA to state RIP6. If 
TOS.ROW .CMP.EQ is true, the output G0.ACK is asserted, terminating the "Accept GO ( ... )" 
statement. When GO.REQ is lowered, the next state becomes RIPO to begin over again when 
necessary. Figure 5-5 contains the CUDL code for the Read_ Init_ Parameters state machine. 

The CUDL code in figure 5-5 was run through ASSASSIN. The code was simulated to verify that it 
matched the flow-graph; the associated PPL program was then generated through compilation of the 
CUDL code. Figure 5-6 contains a plot of the PPL program for the Read- Init- Parameters control. 

20 

  



ASSASSIN 1 

ControrUnit RaadlnltParni 

Sttttfltchin«  RIP: 

StartStata RIP8: 
■ovaen C0_Raq and   (In I tNu«_RECJ)ON and ZnltNua CTR DON)   «B BIPI. 
hold  InltNu«_CTR_CLR,   InltNimjEC LoS;  REC CTR nnx7 ' 

^hold TOS.Cot.CTRJIflx;  TOSJouIcTRlCLi;  TOÖMÄIIBX, 

slat« RIPIt 
■ovaen SRVJtaq   to RIPIB« 

and | 

•tata RIPlRi 
■ovaon nEHJclt and  InltNun CTRJJON  to RIP2f 
hcld»üE!!-R,(''   "EH-Sand,   InltNui»_CTR  INC; 
aat CO.Raaponaa; 

and; 

ctata RIP2i 
■ovaon not SRVJU«, and (not HEHJck and    InitNum CflP ED) to RIP3. 

ho'rrSR^Bc"     'nd <n0, nEn-*e*  •nd n0t In,tNu"-"P-"> to RlfJl 
and) 

ctata RIP3: 
■ovaon ninjiek   and  Rag.CTR DON   to RIP4: 
hold HEII.Raq,   Rag.CTR  INC, 

and; 

ctata RIP*: 
■ovaon Rog_HCr to RIpS; 
hold HEn.Roq, Rag.Dacoda ENR; 

and; 

ctata RIPSi 
■ovaon i<ag_CTR_E07 and not  flEBJlcIt   to RIP6; 
■ovaon not Rog_CTR_ED7 and not  flEft Rek   to RIPS- 

and; • 

ctata RIP6> 

Il!^!0J!irIIE2-BcM!ed,(TOS-Co,-CTR-DON •nd TDS_Pdr.CTR_DDN) to RIP78 hold HEH.Raq, T0S_Col_CTR_INC, TDS_fldr_CTR INC; 
and; ••  —  F 

atata RIP7i 
■ovaon  T0S_Rag_0DN   to RIP8; 
hold TDS_Rag_LDD,   HEH.Raq; 

and; 

ctata RIPS: 
■ovaon not  HEn.Rck  and TDS_Col  CIIP ED to RIP9t 
■ovaon not  flEnjIck   and not  TDS_Col_CHPJ-D  to RIP6; 

ctata RIP9i 
■ovaon T0S_Col_CTR_00N and T0S_Rou CTR DDN to RIPRs 
hold TDS_Col.CTR.nflX, TDS_Ro«_CTR INC, ' 

and; ' 

ctata RIPfi: 
■ovaon not TDS.Rou.CHP ED to RIP6; 
■ovaon not CO.Raq to RIP8; 
If TOS.RoH_CnP_£0 than hold CO_flclc; 

and; 
•nd; 

•nd. 

figure 5-6:  C U D L C ode for Read. Init- Parameteir C ontrol 

Figure 5-7 shows the composite layout. 
The compilation of the control unit took approximately 2 minutes of DEC-System 20 CPU time 

The resulting circuit is 2028 microns by 1050 microns (39 PPL columns by 30 PPL rows using 6- 
micron geometry). The datapath related to the Read. Init. Parameters task cannot be layed out 
until the relationship of some of the registers, which represent global variables (with respect to 
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c Figure 5-7:   Composite Layout (NJI OS) for Reod_ Init_ Parameters Control 
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Read_ Init_ Parameters), witJi olher associated control and datapath elements has been established. 

6. Conclusions 
ASSASSIN demonstrates several Jignificant point i. 

1. Control can be specified at an abstract level and then automatically and easily imple- 
mented as an integrated rircuit module. It is possible to map control specified at even 
higher levels of abstraction to something ASSASSIN understands, thereby enabling ua to 
make progress toward a true silicon compiler. Sudi work is reported In [11]. 

2r Self-timed (or asynchronous) control-units with concurrency can be easily Implemen- 
ted, ASSASSIN shows that the control for self-timed machines can be desiened with 
relative ease. * 

3. The successful use of Path-Programmable Logic in A SSA SSIN shows that PPL has great 
value as a drcuit implementation technique, at least for this type of control-unit This 
also shows that PPL is indeed amenable to the development of sophisticated CAP tods 
that use it as the underlying drcuit implementation technique 

4. The mapping of Ada's rich set of control constructs is very straightforward as il- 
lustrated  by the generation of the control for the Read_ Init_ Parameters task 
ASSASSIN represents a step forward in the design of integrated drcuits by allowine 
high level descriptions of integrated drcuit modules to be automatically compiled to a 
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L The Syntax for ASSASSIN 

low in^ are to be used in underatandin« this descripüon: '       ^ ^e-   1M fo1 

<> - a non-terminal eymbol 
- 0 or more repetitions 
- is defined as 
- OR 

language  terminals are  indicated by uppercase 

<control-unit> 

<idBnti f ier> 

<id-tail> 

<input-descriptor> j 

<input-reductlon-list>: 

<reductlon-stateitient> 

<condition> 

<term> 

<primarü> 

<8tatö-naiiie> 

<8tatenient-l i8t> 

<statement> 

'.=   CONTROLUNIT  identifiers : 
|<input-de8criptor>j <8in-list> END . 

!=   <letter>  <id-tai l> 

=   5i,!ll,r^ ^'^^'^ '  <diBit>  <id-tail> <lBtter> I  <digit> 

=   INPUTS:   <input-reduction-l ist> 

<reduction-8tatetnent> 
<input-reduction-li8t> I 

<reduction-statenient> 

<identifier>  :=   <conditton>  ; 

<tBrni> OR  <condition> I  <terin> 

<primary> I  <primary> AND  <term> 

<identifier> I . (<condi tion»   I 
NOT  <priffiary> I TRUE 1 FALSE 

: = <8in-l ist> 

<sni-descriptur> 

<sin-type> 

<state-li8t> 

<8tate-descriptor> 

<8tate-naine-li8t> j = 

<siti-de8criptor> I 
<8in-de6criptor>   <8ni-ii8t> 

)■   <8ffl-type> STATEHACHINE  <identifier> : 
<state-li8t> END ; 

=   SELFTiriED I ASYNCHRONOUS I SYNCHRONOUS 

: = <state-descriptor> I 
.<8tate-de8criptor>   <8tate-li8t> 

STARTSTATE  <8tate-name> : 
w^r. <8tate'nent-li8t> END  ;   I 
STATE  <8tate-name>  : 

<8tatenient-i ist> END  ; 

<8tate-name> ,   <etate-n3me-li8t> 
<8tate-nanie> 

J=   <idBntifier> 

! = 

t = 

<8tatemBnt> ;   <8tatBment-li8t> 
<statement> 

<tran8i tion-8tatBni8nt> I 
<action-statBniBnt> 

_—_ 
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<tran8ition-8tateinent>:=   <trari85tlon-op>  <tran8ition> 

<tran8ltion-op> ti MOVEON I FORKON I 
JOINS  <Btate-name-li8t> ON 

<tran8i tlon> 

<action-8tatB(iient-l i 6t> 

<action-8tat8rnent> ; 

<act ion-op> 

<output-li8t> ; 

<output-name> : 

<i f-act ion-stateinent>  : 

:=   <condition> TO  <8tatB-nanie-l i8t> j  ! 
<condttlon> TO  <8tate-nanie-l i8t> 

OOING <action-statement-Ii8t> ; 

=   <action-8tatement> I 
BEGIN  i<action-8tatenient>  ;} ENO 

=   <action-op>  <output-l i8t> I 
<i f-action-8tateinent> 

=  HOLO I SET I RESET 

=   <output-naniB>  ,   <output-l i8t> I 
<output-nain8> 

=   <identifiBr> 

IF  <condition> THEN 
<action-8tateinBnt-l i6t>; 

E Ada Code for the Read„ ML. Parameters Task of the INM_ OUT Submodule 
separate   (Ink.OutJIoclula) 

task   body R«ad_Inlt_Par«a*t«rs   la 

— Rccascad global*: 

~  number_of_local_nst_typat_of_«arvieai 
— I oca I _ni l_typ«_o f _8ar v I ca_t ab I 8_POH_« I za> 
— toa.tablsi 

— Local variable declaration: 

oct*t_typ* 
octet_type 
oe t« t.bu f <er_ type 

— The following variable la conaantad out.   It appaarad only In the 
— "high-level" ucad to read In tha TOS table.  Saa below. 
— nunb*r_of_toa_tabla_octatii Integer ranga 2 .. »ax_tos_tabla_aIza - 1; 
oetat_raglit*ri octal..type; 

bsgin 
loop 
accapt Go( 

Init_nuM_lorBal>      blt3| 
ratponaa: out out reaponae) 

do 
response tm   sent_olc; — Also haanc inlt.ek. 

— Cat fron tha server all of tha addr.chunks needed to fore tha 
— basa address in memory that holds tha Initialization paraaatars 
— and sands thasa chunks to tha Haaory aodula. 
for Index In 1 .. in i t_nu«i_f oraa I 
loop 
accapt Srv_raq( — Cat naxt address 

~ chunk frea tha 
— Server Moduli.. 

ssrvar.ceaaand.datuat    arv.coaaandi 
pasponsa_to_sarvsrt  out eut.rsspensa) 

do 
naaory.raquatt( — Put chunk out  to 

— tha Haaory aodula. 
raquast_typa_feraal            =>   load_address, 
chunk_ef_addrass_feraat   s > sarvsr.coaaand.datua, 
octat.feraal                          => dont_eara„eetat) | 

and S.v_r»f); 

^.^^ , -«»..u«**.»^,^..   „-  
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•nd  leopi 

' ^w/H* e.'!;,"vl,*ual   '"•<l«ll"tlon par.Mt.rt   (eontainad 

7;rB^.! ?st;,!.rsc"v,d) ,ro',h' n'-op"Bodui- 
loop 

In  ihm 

H««ory_r»quoat( 

ehun|{_o<_«ddr«tt_lop»«)   «> dont_eip«_X_d«tu», 
= >  oct»t_r«gi«t«r) ; octot.foraal 

cito indox is 
M!l,n J ** '"■-»•«JWrttt.lo 
«hon 2 ■> lnn_aiax_p«ck«t.hi 
uhon 3 -> lnB_addr«tt longth 
«hon 4 K> ln»_t l«»_oijt. lo 
«hon 5 B> ln»_t !■• out ,hi 
nhon 6 = > aclc.typa 

i = octat.raglatar; 
l" octot.raglatori 
> * octat.ragiatari 
i = oetat.raglstari 
l« eetat_ragl«tar| 
•■ octr:_raglatari 

wh»., 7 «> local_naf_t«pa_of_aarvlco...table_roH_aiia 

«h.n « -> nu.bar_of.(ocal.B.t.t„Pa._or_.
0.Cr1vVCf'

9"t'r' 
tm   octat_ragiatar| and cas«j 

and   loop) 

— Raad   In  typa of aarvica  translation  tabla. 

daclara 
roH_nuBbor:    intagar ranga 

e«r  n,.-h.-. 8  "•  nu"b»p-of-l«>ca:_nat_typa8_of aarvicat col_nuabari    Intagar ranga ' 

•  ..   lacal_nat_tgpa_o(_aarvlca_roM_alM} 

Inda^j Intagar ranga 
8  ..  nuabir_of.Jocal_nat_typa8_o,f aarvica 

a   local_n8t_typi»_of_tarvica_roM_Bl»a 
bagin 

päu_nuabar   IB   8; 
loop 

col_nuMbar   IB   6; 
loop 

naaory_raquaat( 
raquaat_typa_<or«al 

'«   •) 

- Outar   loop raada all  roua ot TOS tabla. 

— Innar   loop raada   In a rou of  TOS  tabla. 

«> recalva_datua_octatt 
chunlt_of_*ddra««_fop«al   B> dont_cara_X datua. 
octat.for»al .>  toa.tabladndax)), 

col_nuiiib«r  ta   col_nuabar   +   1; 
axit  whan col_nuabar   ■   loca l_nat_typa_of_8arvlca_roM_BUa| 

indax   ta    Indax   +   lj 
II     Indax   > ■ax_toi_tabla_flxa     than 

reaponaa   ta   bad.arv.coaaand; 
r.'x.u,rnt — Exit  tha currant accept  etataaant. 

•na    Itj 

•"d '««»P; ~ End Innar loop. 

rou_nuabar : s roH_nuabar •»■ Ij 
axit uhen roM_nuabar s nuabar_of tupas of aarvicat 

••»" ,00P> — End outar loop. 
•nd8 — End daeiara block. 

•nd Co» — End of inlt procaaaing. 

•n*  leop» " End of outar-aoat (Inflnita) 
.»_...-. — loop. 

•nii  Raad_Inl t_Paraaatar8j 

27 
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Automated Design of VLSI Architectures: 
Some Preliminaiy Explorations 

■f 

P.A.Subrahmanyani and S.Rajopadhye 
• Department of C omputer Scdenoe 

U niversity of U tah 
. Salt Luke City, Utah 84112 

Abstract 

V e discuss the design of a program transformation system that is geared to aid in the 
automated design of special purpose architectures (circuits), given a high level specification of a 
problem. The synthesis of systolic implementations is outlined, and examples of syntactic forms 
that aid in the description of such architectures (and algorithms tailored to them) are given. 
Finally, we summarize the results of applying the methodology in synthesizing several classes 
of systolic designs (proceeding from abstract, axiomatic specifications), and in the VLSI 
implementation of an A da program fragment describing a part of the DoD Internet Protocol. 
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1. Introduction 
The need for design methodologies for spedal purpose VLSI circuits that help combat the 

spiralling complexity and cost of current day integrated circuit designs is by now well 
established [15]. W e believe that it is also important that such methodologies enable a smooth 
embedding of the resulting circuits into larger systems that consist of both software and 
specialized hardware components e.g., on board control systems. In this context, we have been 
exploring the us*- of high level languages as a medium for specifying the desired behavior of 
special purpose systems, as well as paradigms for mapping such specifications into VLSI 
architectures [26,25, 11]. We are currently developing a set of automated tools for 
transforming axiomatic and/or high level language program specifications in Ada into 
integrated software-hardware systems [12, 13]. In this paper we describe some of the details of 
the design of our transformation system, and in particular the manner in which the language 
constructs influence the architecture of the final machine. W e then indicate some ways in 
which parallelism may be exploited, and how systolic designs may be synthesized. Syntactic 
constructs suitable for describing the behavior of special purpose architectures are also 
discussed. Finally, some preliminary results in applying the methodology to non-toy examples 
are outlined: these include various classes of systolic designs and a hardware implementation of 
an A da program fragment that describes a part of the Department of Defense Internet protocol. 

1.1. Overall Approach 
W e first summarize briefly our overall approach to the design of integrated software- 

hardware systems. 

The initial specifications are annotated Ada programs. The "annotations" [9, 8, 22] allow for 
a statement of 

1. Abstract axiomatic specifications of the behavior of a system, including stateroen'. 
of temporal characteristics. 

2. Performance requirements to be met by an acceptable implementation along 
various dimensions of interest e.g., area, time, response time, throughput, 
reliability etc. 

3. Relevant characteristics of the external environment a system is designed to 
operate in e.g., external timing constraints, relative function application 
frequencies, etc. 

Given either abstract specifications, or an Ada program, or a combination, the following 
transformations may now be attempted: 

—If the initial specifications are axiomatic, then these may be directly translated into 
an implementation suitable for being cast into silicon [25]. 

—Alternatively, the abstract specifications may be transformed into an 
implementation using primitives available in typical high level languages e.g., 
Ada [23]. 

—The high level language programs may be transformed into hardware 
implementations [12]. 

In essence, the annotated Ada specifications may be transformed into any desired mixture of 
software programs and special purpose hardware. The transformation into hardware is 
attempted in two phases: the output of the first phase is a symbolic description of the hardware 
implementation, which is then transformed into a set of masks suitable for actually fabricating 
the circuit. The latter translation uses a program that automatically generates layouts for 
asynchronous control units, given their symbolic description [3]; the layout of the data paths is 
currently done interactively using existing relatively low level design aids (e.g., a 
ComputerVision system). 

The symbolic description of the hardware implementation is couched in an extended Ada 
syntax, by using "macros" for describing specialized hardware structures and algorithms 
tailored to them. Two major reasons for the use of such syntactic extensions are that (1) we 
have found it dumsy to describe certain kinds of concurrency (both at a high and low level) if 
we are constrained to use existing Ada program structures; (2) spedalized primitives are very 
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often more appropriate for succinctly describing  algorithms that  are  tailored  to special 
architectures. 

We have found that the problem decomposition strategy and the configuration of target 
structures chosen is very often critically influenced by the desired performance requirements 
and the complexity measures associated with the target primitives available. This "strategy 
guidance" may be done either by using automated complexity computation aids [17,24] or 
interactively. 

A typical transformation scenario can roughly be divided into two "phases": (1) an analysis 
phase, wherein some global information relating to the program/specification is gathered; and 
(2) a synthesis phase wherein the implementation is built up. The analysis phase typically 
requires an examination of the entire program; this is usually done by traversing the parse tree. 
The synthesis phase is typically incremental in nature, and involves the use of the information 
gathered in the analysis phase and (optionally) further information of a more specific nature 
(i.e., not computed in the analysis phase) which may involve non-local analysis. 

In essence, therefore, there is ^ common set of global properties needed for guiding the 
transformations which is profitably gathered in what we henceforth refer to as the (global) 
"analysis" phase, and a set of more specific properties that are better computed if and when 
needed. This separation into two phases, albeit somewhat nebulous, allows for 

— Conceptual darity 
—Improved efficiency (because global traversals tend to be comparatively expensive) 

—Added flexibility in "global" decision making, since one is not forced to make an 
implementation decision too prematurely. 

The remainder of this paper is organized as follows. In the next section we discuss the 
transformation of specificilasses of syntactic constructs in Ada into hardware structures. In 
section 3, we focus on a few of the strategies useful that enable us to exploit parallelism, and 
then delineate the development of systolic designs (proceeding from either abstract 
spedfications or from Ada programs). W e describe some examples of syntactic constructs that 
aid in the sucdnct symbolic description of systolic designs, and in the transformation process. In 
appendix 1, we summarize the results of applying the methodology in the transformation of a 
fragment of an Ada program spedfying the Department of Defense Internet Protocd [16] into a 
hardware implementation. 

, 

2. Transformation Strategies 
W e outline here a set of transformation strategies that we have developed for some of the 

commonly used syntactic constructs in Ada [1]. These can be broadly dassified into either a 
"direct" (in si*u) transformation of the language construct, or an "indirect" one, involving some 
optimization and flow analysis. The latter can be thought of as a set of source-to-source i.e., 
Ada-to-Ada transformations that account for the desired optimizations, followed by "direct" 
transformation. For the examples discussed in this paper, the target hardware model assumed 
is an asynchronous one [2] wherein state transitions controlled by request-edcnowledge 
protocds that are implidtly embedded in the underlying model. 

To fadlitate exposition, we consider the Ada r»nstructs in order of increasing complexity so 
that we can use the examples for, say, an assignment statement, in an if statement. W e split 
the basic constructs into two dasses. The dedarative constructs serve to determine the 
oolledion of registers, the storage elements and the data paths between them. W e refer to this 
as the "environment" part of the chip. The statements in the body of the program determine the 
(ensemble of) state machine(s) that constitute the "control" part of the chip. It is to be noted 
that this distinction is not very rigid, since, in gereral, the environment part of the drcuit is 
affeded by the statements and other constructs p esent in the procedural part of the program, 
and vice-versa. 

The statement part of a program may in turn be viewed as contributing to either intertask 
oommunicaüün or intratask computation. W e envision an Ada task as a "standalone" drcuit 
which is capable of communicating with other (co-)tasks. Since the A da language specification 
does not detail the manner of this intertask communication, except for asserting that the 

< 
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underlying machinery ensures the existence of an asynchronous protocol (where the selection of 
ready tasks may at times be non-deterministic), ire in fact implement an explicit interfacing 
machine -which handles communication urith other tasks. Its purpose includes maintaining 
information about the availability of the task machine for calls from the "outside", its allocation 
to different callers depending on any priority mechanism that might be desired, and 
maintaining queues to allow for conflicts. A detailed discussion of various intertask 
communication strategies and the trade-offs involved is contained in a companion report (see 
also [12]). 

2.1. Declarative Constructs 

2.1.1. ObjectDeclaratioiiB 
There are two kinds of object declarations in the Ada language — those which declare 

identifiers to be of a prededared subtype, and those that declare them to be arrays. Of the 
prededared subtypes, the most basic are the language-defined primitive subtypes, integer, real 
and boolean. A dedaration of an identifier (or an identifier list) to be of any of these types 
results in its implementation being selected from a library of available primitives. For integers 
this presently consists of registers and RAM's. The registers used for integer implementation 
are in turn made up of flip-flops varying in complexity from simple flip-flops to two-phase, 
read-write flip-flops. The choice among these alternatives depends on the results of global 
data-flow analysis. Reals are implemented as spedal floating point registers, along with an 
encoding scheme and spedal arithmetic functions. Some booleans, depending on the result» of 
global analysis may be found to be redundant in the drcuit. These may result in their being 
implemented as combinational circuitry that computes their value at all instants. The booleans 
that cannot be diminated in Miis manner are implemented as single flip-flops. 

If the objed dedaration is an array dedaration, this is usually implemented as RAM 's of the 
appropriate primitive type. The range of values that the variable can assume is used to compute 
a default maximum size for the RAH which is further narrowed down, if possible, by using 
global analysis. 

For objed dedarations that declare identifiers to be of some non-primitive type, the 
transformation system implements them as spedfied in the implementation of the type 
declaration for the particular type. 

2.1.2. Type Declarations 
An Ada type dedaration defines a new dass of objects. This can either be a simple range 

restridion on the predefined Ada types viz. integers and reals, an enumeration type, an array 
type definition, an access type definition, a derived type definition or a private type definition. 
For every type definition the transformation system maintains information about a default 
implementation in a predetermined template. W hen transforming object declarations of this 
type, this information is used to guide the particular implementation strategy adopted. The 
stored information is incrementally refined when global analysis is performed on identifiers 
declared to be of the particular type. -Currently this is spedfied interactively by the user 

If the type dedaration is a restricted range on a predefined A da type, the limits of the range 
are either constant or variable identifiers. The first case implies a dired upper limit on the size 
of all identifiers that are dedared to be of the type, and this information is added to the 
template implementation. If the limits of the range are identifiers, the results of global data- 
flow analysis for the identifier are used to establish an upper bound on the range, and this 
information is stored in the template. 

Alternatively an Ada type dedaration may define arrays, enumerations, records and access 
types. Currently the default array implementation consists of either RAM's or ROM's. The 
ranges of the indexing variables determine the size of the RAM , and the range of the type of 
individual objects in the declared array govern the word-size of the RAM . Since determination 
of minimum storage at compile time is, in general, a computationally impossible task, we have 
a default maximum on the size. The transformation system finalizes this dedsion after 
interading with the user. Sometimes the user is able to spedfy the sizes more restridively than 
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the system ever could because of a more thorough understanding of the program. This aspect of 
the transformation system is more critical than in conventional compilers, because of our 
special target medium. 

For enumeration types, the transformation system determines a minimal binary encoding for 
the set of objects declared in a reasonably straightforward manner. All future references to 
these enumerated constants are translated to a reference to one or more of these encodings. The 
other type definitions are somewhat more complicated, but the underlying theme of 
determining a default implementation for them is carried over, and a template is maintained to 
hold this information. 

2.1.3. Renaming. Use and With Declarations 
Renaming (and equivalent use/with) declarations are used in Ada to provide new names for 

identifiers, particularly if the identifier is declared in a different program unit. They do not 
imply that a separate copy is maintained, but are simply a notational convenience. As far as the 
chip architecture is concerned, they indicate the necessity of running a bus between two 
modules to make the variable available to both. (It is also possible to have duplicate copies, and 
ensure that consistency is maintained, but this approach is not currently used by the 
transformation system.) In cases where the whole circuit occupies more than one chip, or when 
the modules are physically placed far apart, renaming declarations enable some flexibility in 
exactly which module contains thn actual instance of the object declared. (W e currently prefer 
to rely more on use/with declarations, since too heavy a use of renaming declarations leads to 
more human errors that are not so easy or impossible for a compiler to detect.) 

2.1.4. Subprogram. Package &nd Task Declarations 
These kinds of declarations have been grouped together because, in general, they are all 

program units. Thus they indicate the presence of different computational modules. The scoping 
rules of Ada determine how these modules access variables present in other modules, and 
govern the generation of additional communication circuitry if necessary. If a subprogram 
module has more than one potential calling module it becomes necessary to provide some 
arbitration between possible conflicts. This is currently done interactively, where the user 
either specifies the arbitration circuitry or (usually) tells the system to assume that no conflict 
will occur. 

2.2. Imperative Constructs 

2,2.1. Assignment Statements (involving simple variables) 
The general form of an assignment statement is 

<Identifier>  :=   <Expre88ion> 

The "code" for the target machine is generated by a top-down traversal of the parse tree. The 
transitions in the asynchronous target machine coincide with the order of node-visits in the 
top-down traversal of the parse tree. W e illustrate the method with the familiar example as 
shown below. Consider the simple assignment statement 

a  :=   b*2-4*a*c; 

with the abstract parse tree as shown below (Figure 2-1). 

The root of this tree is mapped into a state, DoAssignment, which sends requests to 
subordinate states which perform the oomputations required. W hen it receives acknowledge 
signals from all such secondary states it causes the result to be "load"ed into the LHS of the 
statement Here the code for "computing" the LHS is trivial since the LHS of the statement is a 



JSmmmmmmMK ^■jWUPWipill^ 

f 

" 

9 0T 

: = 
/ \ 

/      \ 
a 

/ \ 
/      \ 

« * 
/ \     / \ 

b      2 4      » 
/ \ 

a      c 

Figure 2-1:   A bstrad parse tree 

"ComputeLeflArgumenl" and the   C«^^«^« ^uest/acknowledge «IgMj P™1^1'^ 

task body StateDoAssignrnent is 

begin 

^^ISäSäT-^"^' StateCompute 
end ForkToComponents; 

end StateDoAssignrnent; 

follows. 

task body StateFinishA ssignment is 

begin 
accept D ojoinsQ do _   ftA ioin(on(Acknow!edge).LastOfLeftArg1 

J LastOfRightArg): 
endDojoins; 
hold(RegA.load); 

end StateFinishA ssignment; 

C„Un^ with the jb», ».mpU ^„X^'ÄSÖS^'f^Ä 
implementation shown in Figure Z^- .?<?*„•      uie both  operands  of  the »l*««1^ 
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Figure 2-2:   Two implementations of a:= b»2-4*a*c; 

hardware.   Multiplication/dmsion ^   P^e ^n^p^enTed directly as implemented as shifte. Boolean operations «n be ea^yi^ beoauge .t 

combinational  circuits. E^°nfntiat,°n:,hh7r^a;e An alternative strategy for 

regularity of usage is required in this context. 

2. Common-Subexpression Identification: ^«^ "SS^ÄlÄ?5SJ 

rS^uS JSr ofs^e «^ 
souSTo^corporate the results of the data flow analysis. 

3. Temporery Storage Determination: This e.UUs «^ -lysü, of ^e-qu-ment. 
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2.2J2. Conditional Statements 
The general form of conditional statements is as follows. 

<ConditionalStatement> := Mf <Conditiun> 'then' <Stateinent> 
[•else* <Statement>l 

The madiine that performs an if statement's function consists of a state (or a set of states) to 
evaluate the <Condition> part. This state returns a boolean value, depending on which the 
machine makes a transition to one of two states that are the start states for the two 
<Statement> 's. If there is no else clause, one of the brandies makes a transition directly to the 
statement following the if statement. This is shown in the figure below (Figure 2-3). 

Figure 2-3:   Skeletal state machine for an if statement 

In addition to guiding the transformation of assignment statements, inferences from global 
analysis as are used to determine the presence of redundant boolean variables in the source 
program. Such variables are then replaced by just the output line from some combinational 
circuitry. 

2.2.3. Loop Statements 
Ada provides for both simple, unconditional loops as well as while, for. and until loops. A 

construct of the form 

'loop'   <Sequence0fStatenient8>  ; 

is implemented as the set of states that execute the <SequenceOfStatements>, followed by a 
direct transition to the first state in the <SequenceOfStatements>. Any "exit" statements 
inside the <SequenceO fStatements> translate to transitions to the state immediately following 
the loop. 

W e indicate in the next section how such constructs may be used for the synthesis of systolic 
chips. 

For while-loops of the form 

'while' <Conditlon>  'loop' <Sequence0fStatenient8> ; 

the transformation is similar, with the exception that the states for 
< SequenceO fStatements> are preceded by states similar to those for a conditional statement 
(without an else clause), and the last state in < SequenceOfStatements> is followed by an 
unoondi tional transition back to the states for evaluating the condition. 

For constructs wherein the loop consists only of a select statement, (many task bodies fall 
Into this category,) the loop can be replaced by a single state where the madiine waits until it 
receives a signal from any of the modules that call the corresponding accept statements. It then 

- -   —— -    infiiiiift 
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makes a transition to the appropriate set of states, peiforms the required oomputaüon. and 
returns to the "wait" state. 

22.4. PiDcedure Calls .. 
Procedure calls are directly implemented using Request/Acknowledge communication 

between the caller and the state machine that implements the procedure. The state maciüne 
first loads the parameters of the procedure on the bus/lines to the called machine, and men 
issues a request to it. Alternatively, a "lazy evaluation" kind of scheme may be used, where tne 
parameters are evaluated by the caller only when needed by the called module (in response to a 
demand from it.) After the caller receives the acknowledge from the function module (whidi 
implies that the output data line(s) from it are valid) it makes a transition to the next state. 

Global analysis is used to obtain information such as the following: 
1. Whether it is useful to implement the function "in line". This saves some 

communication overhead at the expense of increased silicon area. In effect such an 
arrangement provides a private copy of the procedure to every caller. In VLSI we 
have the added advantage of not being restricted to a universal scheme. Some 
procedures can be implemented in-line while others may be centrally shared 
modules. An even more general solution provides some callers ( depending on 
estimated/measurca frequency of use ) with private copies of the function, while 
others share a common unit. 

2. Identification of globals accessed in the procedure body. This involves deciding on 
appropriate communication protocols and routing considerations. 

2.3. Opümizalion ,  ,   .. .. 
Optimizations of a design are possible at all of the levels in the design hierarchy: 

-At  the  very   lowest  level,   it  is' possible  to  increase system   performance  by 
redesigning individual transistor layouts (e.g. changing Width/Length ratios) to 
increase speed etc 

-At a somewhat higher level, performance improvements can be obtained by using 
specialized circuits to achieve certain funcüons instead of using a standard cell set 

-At the next level, symbolic version of layouts can be locally "manipulated" in order 
to improve efficiency e.g.. this may involve swapping adjacent columns (or rows) of 
PPLs etc.. while ensuring that logical function is not impaired. 

-At  the  state  machine level,  performance improvement can  affected  by  state 
minimization, improved parallelism, eta 

-Finally, the high level architecture of the implementation can be juggled in order to 
improve   performance,  while  maintaining   consistency with   the  the  abstract. 
representation independent, sped fi cations of the problem 

It is Important to note that these levels have rough analogs in the realm of standard 
language translation/machine architecture: faster/more powerful instruction sets, peephole 
optimization, flow analysis on intermediate compiler code, and algorithm improvement 
Further, the overall improvement is typically greater the doser the optimizations are to the 
initial itages of development of an implementation: it is therefore more advantageous to 
attempt to design an appropriate architecture (/algorithm), rather than spend time optimmng 
channel layouts. 

3. SystoBc Architectures ,_       r        _i        «r 
In this section we delineate a few transformations that enable the synthesis of some dasses of 

systolic designs. For the sake of brevity, we deal here only with a few dasses of looping and 
recursion constructs. The methods are applicable to a wider dass of starting points, and the 
theoretical basis for the median!cal synthesis of such designs (among others) is elaborated upon 
in [261. Asa consequence, we have here chosen to emphasize examples of syntadic conatructa 
that are suitable for describing such algorithms and architedures. rather than the details of the 

— 

 _ .„.  
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synthesis strategy itself. 

The primary decompositions possible are one or more of sequential compositUm, paraUal 
decomposition, and pipelining. W hich decomposition scheme is adopted typically depends upon 
the performance criteria desired, a detailed analysis of which we omit here. For example, 
pipelining improves throughput, while parallel processing improves both throughput and 
response time over sequential solutions. Of course, the response time is very much dependent 
upon the algorithm used (i.e., upon what the specific decomposition is, what the 
subcomputations involved are, and how the partial results are combined), and to a lesser extent 
upon the lower level circuit implementation strategies. In particular, we recall that as a 
consequence of wire delays being the dominant factor in single chip implementations, 
asynchronous Implementation strategies are preferable in order not to slow down the whole 
system and to minimize skewing effects. 

W e now discuss examples of syntactic macros that aid the representation of auch 
decompesi tions. 

3.1. Iteration 
Consider the loop structure 

for   i   in  1   ..   N   loop 
x(i)   :=   F(x(i)) 

end   loop; 

A possible sequential implementation of this loop structure is shown in Figure 3-1. This 
implementation consists of a processing element (or cell) that computes the mnction F. When 
the stream of values xj xn is input to the F-cell. the output is the stream F(xi) F(xn). 

A parallel implementation is possible if the computation of F does not have any side effects 
on the subsequent computations in the loop. Such an implementation can use N instances of the 
same F-cell, input the vector of values <xi xn> in parallel, and output the vector of results 
<F(xj)....,F(xn)> in parallel. The i-th instance of the F-cell thus inputs Xi and outputs F(xi). 
This is illustrated in Figure 3-2. 

W hen each computation through the loop results in the computation of a partial result that is 
"assembled together" in the subsequent iterations, a pipelined implementation can be 
generated. 

T hus, if w e consider 

for   i   in 1  ..   N   loop 
x  :=   F(x) 

ond   loop; 

then a pipelined implementation using N instances of F-cells is shown in Figure 3-3. 

A combination of one or more of these techniques can obviously be employed whenever 
needed. 

3.2. Recursion 
Some classes of recursive functions (procedures) can also be mapped into systolic 

implementations. It is of course possible to first apply standard recursion to iteration 
transformations and then apply the techniques discussed here. It is however also possible to 
avoid this intermediate step in several cases. As an example, the form shown below can be 
directly transformed into either of the implementations shown in figure 3-4. 

function natch (a,   pi   string)   return boo laan   im 
begin 

if a = nul I 

ww 
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Fi«ure3-l:  Sequential Implementaticm 

•     • 

T 

Figures-«:   Parallel ImplemenUüon 

-Rio •     • -KZ}-* £E$üLT 

Figured:   PipelinedImplementaüon 

then if p = null 
then retiim(tru») 
else returat<•!••' 

etoe if L«it(»)=L««tCp) 
then l1.tch(nil_B«t_La.t(.), 

Hi I_But_Lait(p)); 

end naieh; c 



" W" mmmmmmmmmmmmmmmmmm mmmMmmm mmm^mmmmmimmmmmmmmfm 

10 

I 

U 

MATCH («.f) 

Fotlavlnnuu.«»■ AICH.ulw.»JMfcuMAHO C.u 

>  Jdau 

T-» 
i 

«Ate« ts.j») Itatcmd Plp«lla«ä InpiraimaUoo 

BlgblknuibpuLSI» 
Pij»lin. IsiplvMslW iuiB( Dtdtj Eli 

ifw toil—Irti 
' «Al! 

Figure 3-4:   Implementations generated for H atdi 

advantages over the expanded/graphical forms in pattern matching and automated 
transformation in that (1) there is a significant decrease in complexity in doing textual pattern 
matching over doing graphical pattern matching (sublinear vs. quadratic or more); (2) the 
absence of global :nler-depehdency of subcomputations in the iteration body is explicit and does 
not have to bs infimd by global data flow analysis; (3) performance metrics can be easily 
defined over such suoänct representaüons: this facilitates automated complexity computation, 
althuugh a graphical representation (which is isomorphic) typically facilitates human 
computation /comprehension. 

3.3.1. Broadcasting 
Broadcasting a signal to a set of ports associated w ith some collection of processing elements 

is stated as 

Broadcast (signal,   Set_.uf.Torts) 

For example, the Set- of- lorts may be a collection of named ports of an array of similar 
processing elements. 

Roughly speaking, port names of cells may be viewed as entries of tasks associated with 
them. Thus, consider a M ULTIPLY- ADD- CELL that accepts has 3 inputs (ports) a, b, and c 
and outpucs a single value a*b+ c We can describe a linear array of 
MULTIPLY-ADD-CELL'S which is useful in several systolic algorithms for matrix 
computations, as 

f1ULTIPLY_ADD_üELLS:   arrayd-.N)   of MULTIPLY.ADD.CELL; 

If we then want to state that x is broadcast to the N input ports named "a" of the array of 
processing elements M ULTIPLY- ADD- CELLS, we can express this as 

v'l      -Q 

^timmmm -■ —-'"■ 
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Broadcast(x,  nULTIPLY_ADD_CELLS.a) 
I 

N ote that this is identical to saying j 

for i in 1..N loop CONNECT(x,nULTIPLY_ADD_CELLS(i).a) end loop; 

This can be generalized in an obvious manner to more complicated cases, induding one 
wherein the set of ports is computed dynamically. 

3 4 Regular Interconnection Structures and Related Operations 
W hen a set of processing slements have regular interconnections with their neighbors, it aids 

comprehension and pattern matching if the "local" Mid "global" parts of the interconnections 
are stated succinctly (as opposed to specifying the detailed interconnections). 

W hile the components of an architecture is described by the set of interconnections between 
the hardware modules it consists of. its frnctioning, or the computational details of an 
aleorithm tailored to it involves stating how input data streams move through the system, get 
operated upon, and ultimately emerge as output streams. W e now give examples of these in 
some standard settings. 

3.4.1. Linear Inteiconnectkin» „ •. J 
A pipelined computation in linear interconnection of a set of cells can be expressed as 

Pipe line (Array,  Direction,  BoundaryCondi tions, . A-JI—#.♦ r.i n 
Set_of_Output_Port8,  Set_of_Input_Port8_of_AdjacBnt_Cell) 

where Direction is either left-to-right or rightH.o-left. the Boundary Conditions state what is 
input at the left or right extreme port and what is to be done at the coiresponding output, and 
the pair of sets Set_ of_ Output-Ports and sel-of-input-ports speafy the set of 
complementary port names that detail which ports of adjacent cells are interconnected. 

Asa specific example, w e have 

Pipe line (MULT I PLY ADD_CELLS,  LeftToRight,  8, „«,.,,,     , P nÜLTIPLY_ADD_CELL(i).c,  f1ULTIPLY_ADD_CELL( i+ l).a) 

or 

PioeIIne(MULTIPLY ADD CELLS,  LeftToRight,  8, ripelinein l1ÜLTIPLY_ADD_CELL.c,  Right(MULTIPLY_ADD_CELL).a' 

where Right{M ULTIPLY- ADD- CELL) indicates the cell to the right of the current cell in the 
linear array. 

Sudi constructs can be generalized. As an example, we next consider treö interconnections. 

3.4.2. Tree Interconnectiona , j        _f 
As an example, we give the skeletal spedfication of the operations and workings of a 

"Didionary machine" that has the main computation performed by its leaf processors. Note 
that the broadcasting process may itself be defined in terms cf a task (in A da). 

t 

task Dlet fonary 

entry  INSERT U>    in KEY;   n   in RECORD)! 
entry DELETE<ki    in KEY); 
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entry SEARCH (k:   in KEY,   rt   out RECORD); 
entry UPDATE (k i   in KEY,   r<   in RECORD), 
entry nIN_RECORD(n   out RECORD), 

end, 

task body Dictionary is 

TREEi BinaryTr»e (DictlonanjSlz«, La«fProeatsor, 
IntarnaiNoda0rocaaaor), 

-- This pro.cataer traa iaplaaanta tha Dictionary 
-- LaafProcaiaor and IntarnaIProeeator ara 2 
-- types of procasaora ("taak typaa") that ara 
— uaad in inatantiat Ing tha traa. 

FunctionPort, KayPort, RacordPort« Por», 
-- FunctionPort raprasanta tha phyaical iinaa 
-- that activata tha function invokad and tha 
— Iinaa naadad for tha raquaat/acknouIadga protocol. 
-- KayPort and RacordPort rapratant tha phyaical 
— Iinaa aaaociatad with k and r. 

— Tha association batHaan tha logical ports and phyaical porta 
— la datailad balou. Tha ganaral fora of this conatruct la 
— REPP^SENTCphyaleai-port-naaa, function-naaa, paraaatar-naaa) 
— uhl   states that tha *phya I eai-port-naaa* rapraaanta 
— tha -paranatar-naaa* aaaociatad with 'function-naaa'. 
— Thia tnablaa atataaant of tine aultipiaxing of tha Iinaa. 

REPRE:EK:(KayPort, INSERT, k), 

m 
REi>RESENT(KayPort, tllN.RECDRD, k), 

REPRESENT(RecordPort, INSERT, r), 
REPRESENT(RacordTort, SEARCH, r), 
REPRESENT(RacordPort, UPDATE, r), 
REPRESENT(RacordPort, f1IN_REC0R0, r) , 

— Tha intarconnactiona to tha global porta ara daacrlbad balou 

CONNECT(Root(TREE).ANSUER, RacordPort), 
CONNECT(Root (TREE).KayPort, KayPort), 
CONNECT(Root(TREE).Funct ionPort, FunctIonPort), 

begin 
loop 

■elect 
accept SEARCH (k i in KEY, rt out RECORD) do 

Broadcast;*, r, La«fa(TREE).SEARCH) , 
— dalay 0 (log(Dic11onaryS I za)) 
— thia la dona by Making uaa 
— of tha intarnal noda processors. 
— Tha "finswer" fro« tha root la 
— eonnactad to tha global port 
— corresponding to r. 

end SEARCH, 

end select; 
end loop, 

end Diet ionary, 

laalt   type LaafiVecaaaer   is 

^ ■MÜMkMittiÜMMiHi im 
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entry INSERT (..   in KEY,   r.   in RECORD) , 
-„w SEBRCH(l(i    in KEY)» entry SEBRCH 

end L»««Proc«itor, 
twk body Li««Proc«««or ia 

This !• 'he iocal "■U- 
L..«K.a. "V' CORDt    " Thl. It th. r.cord In th. 
L.««R«copd: RECORO,       (!<f ppoc„tor( or • cod« 

__ indicting that th.r« I« no 
__ rocord «t thl« loaf. 

begin 
loop 

■elect 
.ceept SEnRCHU' Jn KEY)   d^   0EF INED (Uoc. .««cord) 

i^FV'hVr.RN^ERCLoc.Rocord), 
then 

end SERRCH 

end select; 
end loop; 

end L««fProc«««orj 

toA  type^rn.lNo^oc.«^   i.   ^ ^^ 

entry DELETE (k:   in KEY), 

r       ,    «^«n     Bn.H«pFroiiRlghtSon:   in RECORD, 
*__ auqUER (fln«M«rFroiiiL«»tSon,   Hn,M"V' ' 

entry BNSUER ^'„"„.^„„.r ,   out RECORO), 

i end    Int«rn«INod«Ppoco.«or, 

taA body Intorn.lNod«Ppoc««.or   is 

begin 
loop 

'*•*       .ecept SEBRCH (K.   in KEY,   •'.««t««0R0)   do 
Bro«dc««t<lc,   Son«.SEARCH), 

delay 1) 

end SEBRCH 

end select, 
end loop, 

end Diet lonary. 

3 5. Input and Output of Dato Streanw utation is input and output is of great 
The manner in which the data nee*;*'°r ° S*. Suodncte descriptions of such dal^ 

ixnporUnce in designing "«ft^S^ÄduS purpose in aiding simulaüons much the 

R.   arrayd.-N'   of BITS, 

^^^^a^auMii^AM-aBai^^  ■•, ^.^,  m^iiitiim|.iWll 
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INPUT(fi), 
INPUT<SKEU(B,1)), 

— R»prtt«nt* an array of bits input in parallai 
-- Rtpraaanti a rotated Havafront of bita 
— Hhara fid) |s |npUt at tiaa i, 

fl<2) ia input at tiaa 2, ... 
— and  so  on. 

Addiüonal timing statements may similarly be incorporated.   These forms can be exoanded 

irdTite^sUl^r  ^  ^ '^  ^  0Perati°n 0f «^-ithmsTai.^d^Äc 

3.6. Distnbution of Data. A SystoUc Stack hnplementation 

fvtn 
• • 

cetL **CUL 
rvsH 
ecu. 

"1 

      -^ *-J    C^NTXcO 

Figure 3-6:  A Systolic Stadt ImplementaUon 

1 

task Systo i icStaek is 

entry INSERTCx: in Eianant), 
entry DELETE(xi out Elaaant), 

" !J hi«  - I     ,VlC  •nnot*t""'»" «P-cif« tha b.havlor 
— of thaaa to ba that ascociatad H|th tha akatract data 
-- typ. -Stacic". Ua o. i t thaaa h.r. for bravit«. 

end Syatoi icStaek; 

task body Syito IicStack ia 

record 

Callflrrayi   arrayd..«)   ofPuahCall 
•   •   a 

end; 

— Local Intarconnactiona 

Connact(PuahCaIi.SandLaft, Laft(PuahCa I i).INSERT), 
— thla ia a Right To 
— Laft data tranafar diraetion 

ConnscUPuahCal I.CatFro.Laft. Laft(PuahCaii).DELETE) , 
— thla ia a Laft to Right 

■titti^iäatfitfUtflilliiHiiif 
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__ Boundary ConditIon» 

.MiicjFBT c«l lBrr«y(N).INSERT) j 
Conntct (INSERT, L,,,"r *„. nFLETE) i 
Conn.ct(OELETE,   C.Mflrr.« (N).DELETE) ; 

,t(C.llBrr.u(l).C.tFro.L.1t,   UNDEFINED), 

begin 
loop 

'^ept INSERT (x,   E«."«»»   *% 
CtIIflrray (N).INStKi "«»I 

end INSERTj 
■eceut DELETE <x: out) do 
*      P       Ctllfirr.a(N).DELETE(><); 

end DELETE, 
end select, 

end loop, 

end Syttol lcSt»cK, 

^ ^en^INSERT'cx.   la E....«»>, 
enS DELETE <xi    ontEl.-nt), 
ent?S.ndL.ft<x.   outE..-.nt), 
«tSc«tL.«t(x:   inEI.«.nt), 

end, 

task body PuihCill   » 

CurrtntEltMnti   EleMntj 

begin 
accept INSERT<x. .^""^M (Curr.ntEl...nt)) I 

._   to    l«n   noighbor 

..  Both   th.«o   oporatlon.  can  ba 

.-  dona   in   1   cycla   «»'"S   • 
__  2-pha.a   clocltad   «lip-Hop 

Cui'ron tElaaant i =x, 

end INSERT, 

::"U.   ..it    ..pl.-antatlon.   for   th.   oth.r   port.. 

end Pu.hCal I, 

. 

, 

c 

r 

il i ifftKiililiil 
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mathematical basis for supporting such automated synthesis may be found in [26]. The 
discussion there also elaborates on how the performance criteria, cost metrics and technology 
constraints affect the synthesis strategies. 

4. Conclusions 
W e have detailed in the preceding sections the structure of an automated transformation 

system geared to aid in designing systems that consist of a mixture of software components and 
special purpose (VLSI) hardware components. In particular, we have indicated the mapping of 
various syntactic constructs in Ada into hardware structures, and some other high level 
constructs into systolic implementations. It is intended that these transformation tools be 
based on the theoretical framework developed in [20], and therefore produce designs that are 
formally verifiable. 

An additional contribution has been to delineate syntactic forms that aid succinct 
descriptions of special purpose architectures and algorithms tailored to them. The design of 
such constructs has been done to aid direct mapping into circuit layouts, and to reduce the 
complexity of pattern matching involved in the transformation process. Such forms may be in 
fact be viewed as "macros", since they may be elaborated using the existing set of Ada 
primitives. Unfortunately, however, the resulting expansions are sometimes quite clumsy and 
obfuscating; on the other hand, a potential use of these expamdons is in simulation of the 
resisting hardware using commercially available compilers for Ada. 

Finally, we have summarized some of the results of our preliminary empirical explorations in 
using the transformation/synthesis methodology. The examples considered included various 
dasses of systolic algorithms and the hardware implementation of an Ada program fragment 
using "path programmable logic" [20. 14]. Our preliminary results have been quite 
encouraging, and have served to emphasize the importance of performance characteristics In 
determining the global synthesis strategy. It has been estimated that the trade-off in using the 
latter methodology for low level VLSI design results in about 10-20% increase in chip area 
required (when compared with custom layouts), but results in a drastic reduction in the design 
time (from a few months to a few days) [20]. 

Acknowledgements. W e gratefully acknowledge the feedback received on various aspects of 
this work from our colleagues in the "Ada-to-Silicon project", particularly Elliott Organick, 
Tony Carter, Al Davis, Alan Hayes and Gary Lindstrom. Special thanks go to 
S.Purushothaman for porting the transformation system to run on the Vax. 
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Appendix 

1 Haidware Implementation of a pail of the Internet ProtocoL A Ca^e Study 
In this appendix we summarize the results of applying the methodology detailed aW m the 

Ira^fomiation of ä fragment of an Ada program specifying the Department fj**£***** 
ProtocS[16] into a hardware implementation. The Internet Protocol (henceforth referred to as 
IpTSTcimmunication protocol d'esigned to enable packets to bg^^^^^Ä 
The function of the particular module that we consider here (called ReatL^ ^/■»=««* »■ 
to read in the initialization parameters from the Memory U^t' a^ t° ^H" 
acknowledgement to the caller when it is done. The P^^^^^V/JiWluv fn^ «i of 
general procedure that achieves this while admitting a great deal of flexibility in the sizes of 
various parameters. 

Generation of the Circuit for Read- Init_ Parameters 
The Ada program shown above is transformed using the methodology outlined earlier. For 

the most part, it corresponds to a direct application of the strategies outlined ,n 2. Some of the 
salient features resulting from the optimizaüons are described below. 

The case statement, which constitutes the major portion of *h\<SequenceOßtet™ents> 
nart of the first loop is very highly specialized in that it simply checks the index vanable of the 
CTop anS de^nding on its value, chooses a variable that is loaded fro™ V?^/n-fhv 
(St_ roister). Asa result this is implemented by using a multiplexor which is controlled by 
the loop variable. 

Since   the  variable   "number. of_ tos_ table, octets"   is   the   product  of   t*°  ™a"« 
"l«xal    net   type. of_ service. row_ size" and "number, of. local, net   types, of. service 
and is'n^e; used except in a final escape clause in the second loop, we use two nested loops and 
do away with the multiplication altogether. 

The final target code is shown below. A symbolic description of the droiit obtained from this 
by uring the Assassin program [3] and laying out the data ,.aths is also shown h«. Thtatam 
of the circuit can be directly transformed into a set of masks for fabnoaüon. an instance of 
which is also shown. 
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■cparatc  (Ina.Ou t.llodu la . Ina_Out) 

procedure R*ad_inIt.paraaattrt (r* it   out out.raaponaa)   is 

procedure flaaory.r aquae t ( 
chunk _of_acldraaa_fopaa Is chunK_of _addra8t_typa; 
do.wrIta.faraals boolaani 
octat.foraalt out octat_typa) 

renames ttaaory .Raqua« t; 

octat.raglatan octet; 

begin 

—  DoNnload   tha  6   Individual   Initialization  paraaatara. 

for i ndox   in 1   ..   8 
loop 
Maaory.raquaat( 

i aquait_typa_faraal => raca I va_datuB_octat, 
ehunl(_of_addraa8_fcpBal   => don» t_cara_X_datu», 
aet«t_for«al = > octat_pagiitar)| 

case    ndox  is 
whttn i   =>   Ina.aax.packat (•) i=   oc ta t_rag I a tar; 
whon 2   =>   lne_aax_packat (1) t=   octa tlragla tar; 
when 3   =>   lnn_addraas_langth :=   oc ta t_rag latar; 
when 4   =>   lnB_t I aa.out (•) t=   octa tlrag la tar; 
when 5   =>   lnB_t iaa.out (1) i=   oct a t.rag la tar; 
when 6   = > ack_typa :=   oc tatlrag I atar; 
when 7   =>   loca l_nat_typo_of „aarvlca ,tabla_roH_a I xa 

i=octat_ragiatar; 
when 8   => nunbar_of _loca l_na t_typaa_of _aarv I ca 

i=   octat_roglatar; 
andcaaa; 

end loop i 

nuabar_of_tof_tabla_octata i= 
local_nat_typa_of.aarvica_tabla_rou_8lza        » 

nuabar_of_iocal_nat_typaa_of_aarvIca; 

for Indux   in 1   . .   nu«bar_of_loa_tabla_octata 
loop 

ttaaory.raquaat ( 
raquaat.typa.foraal => raca I va_datua_octat, 
chunk_of_addra88_forBal   => don't_cara_X_datun, 
octat_for»al =>  toa.tab la (Tndax)); 

end loopt 

end Raad_lnlt.paraaatara; 

Figure 4-1:   Source Program for Read- Iiiit_ Parameters 

. ■ 
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is new 
is new 
is new 
is new 
is new 
is new 
is new 
is new 
is new 
IS new 
is new 
IS new 
IS new 

RRfl (Hddr 

CIP IncR* 

with TrancforaatlonCanaries, NauBooleanj 

procedure RIPTargat is 

task RIPStart is 
entry RaqRIP; 

end RIPStart} 

Unk body RIPStart is 

package InatlaxPacKatLoH 
package InaflaxPaelcatH I gh 
package InaRddraaaLangth 
package InaTlaaOutLoH 
pp;kage InaTiaaOutHigh 
package InaRcKTypa 
package InnTOSTablaRouSIza 
package NoOfLocNatTOS 
package TOSSIzaCountarPraI iaRag 
package TOSEntryCountar 
package EntryDona 
package TOSOona 
package LooplOacodar 
package TypaOfSarvicaTabla  is new 

package TOSRddraiaRagIatar  is new 

package ControtUnit is 

task RIPStatal is 
entry nova2| 

end RIPStatali 

taak RIPStata2 is 
entry flovaS; 

end RIPStata2; 

task RIPStataS is 
entry tloval; 
entry llovai; 

end RlPStataS) 

task RIPStata« is 
entry ttovaS) 

end RIPS tat«4; 

task RlPStataS is 
entry HovaSi 

end RlPStataS; 

task RlPStataS is 
entry Nova?; 

end RlPStataS; 

task RIPStata? is 
entry llovaS; 
entry flovaS; 

end RIPStata?; 

task RlPStataS is 
entry dovaS; 
entry tlovaSTRT; 

end RlPStataS; 

Raglatar(aiza = > 8) 
Ragiitar(alza = > 8) 
RagiatarCsiza - > 8) 
Raglatar(aiza m > 8) 
Raglatar(aiza = > 8) 
Raglatar(aiza = > 8); 
Raglatar(alza = > 8); 
Raglatar(aiza = > 8) 
Raglatar(aiza = > 8): 
Raglatar(aiza - > 8) 
EqCoaparator (a I za => 8); 
EqConparator (aiza => 8); 
EnDacodar (Inputs Iza «> 3); 
aaaS iza = > 8, 
UordSiza    ■> 4>| 
giatar(aiza -- > 8) ; 

taak body RIPStatal is 
begin 

accept neva2() do 
B<iva(on(naaoryRaquaat.ncl(), to (RIPS tataS2)) ; 

end nova2; 

c 
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I 

I 

hold (MtaRaq); 
end PIPStat.lj 

task body RIPSt«t«2  is 
begin 

accept Hove3 ()    do 
• ov«(on(NIL>(    to(RIPSt«t«3) ) ; 

end :1OV«3J 
rat« t (lUaRaq) j 
hold(LooplDocodar.Enabl«) 

<snd RIPStata2| 

task  body RIPSt«ta3   is 
begin 
■elect 

accept tloval ()   do 
■ova(on(   NOTCnaaoryRaquait.nck))   RND 

NOTCDacodarCountar.Carry))), 
toCRIPStatal)); 

end doval; 

accept nova4 ()   do 
■ ova(on(   NOKnaaoryRaquait.RcIc)   RND   DacodarCountar. Carry), 

to(RIPStatat))| 
end hove*; 
hold(TOSSIzaCountarPral laRaq.Inc)> 

end RIPStata3| 

Uak body RIPStata4  ia 
begin 

accept flovaS ()   do 
liove(on(NlL) ,    to (R IPS t a taS)) | 

end fl o v a S| •   . 
hold(TOSSIzaCountarPral laRaq.C Ir); 
ho Id(TOSEntryCouvntar.Clr); 
ho Id(TOSRddraasRayiatar.C Ir); 

end RIPStata4) 

task  body RIPStataS   ia 
begin 

accept «o 'BC ()   do 
aovaContnaaaryRaquast.Rclc),    to(RIPStata6))) 

end HovaS) 
ho Id (flaaRaq) ; 

end RIPStataS; 

task  body RIPStataS   ia 
begin 

accept nova7()   do 
■ ova(on<NIL),    tc(R IPStata7))j 

end flovc7; 
rasat (RaaRaq) i 
hold(TypaOfSarvlcaTab la.Urlta> 

end RIPStataS; 

taak body RIPStata7   ia 
begin 

eccept (lovtS ()   do 
aava(on(NIL)>    to(RIPStataS))| 

end HovaS; 
ho Id (TOSSIzaCountarPral i niR.q . I nc) ; 
hold(TCSEntryCountar.Ine)| 
hold(TOSflddraBaRaglatar.Inc); 

end RIPStata7| 

taak  body RIPStataS  ia 
begin 
■elect 

accept HovaSO   do 
■ ova(on(N0T(T0S0ona)),    to (RIPStataS))| 

■ -    .■.^^^->^. 



r 
mm mmv.mm mmmmm 1     ' Ull!MM«l.l.l|imi,JIIUJJ.IUllllim 

o o u 

21 

end tlovoi?; 
accept HoveSTRT ()    do 

move(on (TOSDone) ,    to(RIPSt«rt)>; 
end nov«STRT; 

hold(TOSSizeCounterPrali«R«q.Clr)( 
hold(TOSEntryCount*r.Inc)| 

end RIPSt«t*8; 

end Con t ro lUn i 11 

begin — body of t*iK RIPStart 

accept RoqRIP do 
■ ova (on (InaSorvor.Raquait), to (R IPStataSl))| 

end RaqRIP; 
hold(TOSSizaCountarPraMaRag.Clr)| 

end RIPStart; 

begin Body of procadura RIPTargat, apacification of 
in tarconnact ions 

CONNECT (namoryRaquast.Output(8..7), 
CONNECT (nanoryRaquaat.Output(8..7), 
CONNECT (nanoryRaquaat.Outp'Jt (8..7), 
CONNECT (nanoryRaquaat.Output(8..7), 
CONNECT (flaaioryRaquaat.Output (8..7>, 
CONNECT (nanoryRaquaat.Output(8..7), 
CONNECT (nanoryRaquaat.Output(8..7), 
CONNECT (nanoryRaquaat.Output(8..7), 
CONNECT (nanoryRaquaat.Output(8.t7>, 

Typa0fSarvicaTabla.Input(8..7))t 
InnnaxPacl(atLoM.0ata(8..7)); 
InnnaxPaclcatHlgh.Data(8..7))( 
InnflddraaaLangth.Data(8..7))( 
InnTinaOutLoN.Data(8..7)); 
InnTins0utHjgh.0ata(8..7))| 
InnRckTypa.Data(8..7))| 
InnTOSTablaRoHSiza.Data(8..7))| 
No0fLocNatT05.Data(8..7)); 

CONNECT (EntryDona.Inputl(8..7), InnTosTtfblaRouSiza.Data(8..7)>| 
CONNECT (EntryDona.Input2(8..7)> TüSSizaCountarPralinRag.0ata(8..7))| 

CONNECT (TOSDona. Inputl(e..7), NoOfLocNatTOS.Oata(8..7)>; 
CONNECT (TOSDona. Inputl(8..7), TOSEntryCountar.Data(8..7))t 

CONNECT (TypaOfSarvicaTabla.nddraaa(8..7), TOSRddrasaRagistar); 

CONNECT 

CONNECT 
CONNECT 
CONNECT 
CONNECT 
CONNECT 
CONNECT 
CONNECT 
CONNECT 

(LooplDacodar.Input(8..2), 
TOSSizaCountarPralinRag.Data(8..2)); 

(LoopIDacodar.Out put(8), 
(LooplDacodar.Output(1), 
(LooplOacodar.Output(2), 
(LoopIDacodar.Output (?), 
(LooplDacodar.Output(4), 
(LoopIDacodar.Out put(5), 
(LooplDacodar.Output(6), 
(LooplDacodar.Out put(7), 

end RIPTargat; 

InnnaxPackatLou.Load); 
InnnaxPackatHigh.Load)) 
InnflddraaaLangth.Load); 
InnTinaOutLou.Load); 
InnTinaOutHigh.Load); 
InnRckTypa.Load); 
InnTOSTablaRouSiza.Load)| 
NoOfLocNatTOS.Load)| 

• 

( 
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Figure Composite Layout (KU OS) for Read. Init_ Parameters Control 
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ABSTRACT 

This report explores the contention that a high-order language specification of 
a machine (such as an Ada program) can be methodically transformed into a 
hardware representation of that machine. One series of well-defined steps 
through which such transformations can take place is presented in this initial 
study. 

The general method consists of a two-fold strategy: 

1. Transform the high-level specification into a 
communicating "state machine/data path pairs". 

network of inter- 

2. Through a catalogue method, map each state machine / data path pair 
into a circuit realization. 

Four representational levels are utilized in the transformation process. 
inter-level transformation is discussed.  The four levels are: 

Each 

1. Ada specification of the algorithm. 

2. Machine-description specification of the algorithm, consisting of a 
control part and a data part. This version is expressed in a 
stylized dialect of Ada developed for this study. 

b. Protocol-definition specification of the algorithm, obtained by 
inserting constructs that define inter-program unit communication. 

i4. Storage/Logic Array (SLA) specification of the algorithm, which can 
be mapped directly to, and are regarded as equivalent to, circuit 
representations. 

Tne transformation strategy relies upon exploiting a one-to-one correspondence 
between Ada instantiations of generic packages introduced in the level 2 
representation and SLA "modules", which are composed of primitive SLA cells 
introduced at level 4. 

The transformation methodology described in the paper has been demonstrated for 
a non-trivial Ada program example. 

1. Introduction 

This report reviews elementary principles applicable for methodically 

transforming a high-order language rpecification of a machine, such as an Ada 

program, into a hardware representation of that machine. In this initial study, 

we discuss one series of well-defined steps through which such transformations 

. ■.««.»,«. rliillrrlTTfr ■ li-y-niiri .■SäiMMfe 
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can take place. 

Research on automating Ada-to-Silioon transformations is currently underway 

at the University of Utah [9]. In this report, which does not attempt to 

document the specifics of the mainstream of that research, we outline a series 

of mappings for transforming individual Ada program units to equivalent 

integrated circuits. Our emphasis is on the feasibility of these 

transformations and is not concerned with finding a series of optimal 

transformation steps. Our purpose is to: 

1. Demonstrate one (relatively straightforward) approach by which an Ada 
program can be mapped into a specification of an integrated circuit 
(IC) through adherence to rule-based techniques. 

2. Examine the pros and cons inherent in the most straightforward, 
unoptimized approach. 

The method presented follows the general transformation strategy suggested 

earlier [dj. The essence of this strategy is to represent each Ada program unit 

as a synchronous stored state machine part and a data path part. Circuits 

derived by following this approach have the general form pictured in Figure 1-1. 

The pairing of a state macnine and a data path (i.e.. an environment) is 

referred to as an "engine". The hardware realization of an entire Ada program, 

or of any subset of program units of that program, is actually a network of 

asynchronously intercommunicating engines, each having the form outlined in 

figure 1-1. for the convenience of this report, individual Ada task? are 

considered to be program units. 

A transformation methodology is just beginning to be explored [,11]. There is 

need to develop a well-defined set of rules through which such transformations 

can eventually become a mechanical process. Some guidelines that distinguish a 

set of rules as having the potential for eventual automation have been'suggested 

[10]. 

wafrni.ti,- 
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I feedback v 
Output 

Figure 1-1:  An Engine and Its Two Principal Components 

The transformations presented here are considered to be extensions of those 

originally outlined in the following sense: 

1. Kot only is the high-level specification of a program unit expressed 
in Ada; intermediate levels of representation are also expressed in 
Ada. "Machine-description" and "Protocol-definition" styles of Ada 
programming are proposed to express intermediate transformation 
steps, permitting the algorithmic behavior to be checked through Ada 
program execution at all intermediate levels as well as the top 
level. 

2. NMÜS Storage Logic Array (SLA) technology [15] [I1*] is chosen for the 
low-level realization of the machine. (More practical versions of 
SLAs, called PPLs have been developed to serve as a target for this 
transformation process [9j.) SLA "modules" give us a set of building 
blocks tnat fit the specific needs of this method. Utilization of 
other semi-custom integrated circuit components offers an opportunity 
for enricnment of this methodology into the VLSI range. 

i nigh-order language Ada program is transformed in three steps to reach the 

level of representation from which integrated circuits may be produced directly. 

In this report, the four levels, counting the starting level, are callod 

"stages". These stages are: 

1. Hign-level Ada program 

2. Machine-description Ada program 

3. Protocol-definition Ada program 

H. NMOS SLA program or equivalent 
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Characteristics of these stages and rules that guide the transformations 

between them are presented in succeeding sections. A case study that was 

performed following this method on a non-trivial Ada program is presented 

elsewnere  [6]. 

[we again stress that circuit optimization (space or speed) is not a goal 

addressed in this paper. Thus, in situations where performance or circuit area 

or both are critical, the approach presented is unlikely to yield circuits with 

characteristics that are competitive with those produced by more custom methods, 

especially for many important, but special algorithms, e.g., those that lead to 

compact systolic arrays.] 

2.  Stage  1:   High-Level Ada Program 

The machines specified and realized by our transformation process are viewed 

as ensembles of interacting state machine/environment pairs (engines). The 

programming language Ada is well-suited for specifying such pairs. Thus, a 

strong correlation exists between data abstractions in Ada and data abstractions 

in certain views  of integrated circuits;  indeed we exploit this correlation. 

( i 

An Ada program is composed of one or more program units [5] [2]. A program 

begins execution as a single thread of control in the main subprogram, but can 

initiate tasks, each of which nas associated with it a separate thread of 

control. A program unit in this model is analogous to a machine that is 

initiated via a single "Go" button, but which is capable of delegating work 

among potentially concurrent sub-machines. In Ada, such sub-machines lake the 

form of tasKS. Ada also offers flexibility and control in specifying the 

communication between program units, i.e., in specifying the kind of interaction 

between units. Data abstractions represented as Ada packages, another form of 

program unit, are also transformable into individual engines whose operators 

eitner transform given instances of a data type or own and operate on individual 

instances.  Shifting such an engine from idle .to a particular active state 

"'LU<^M0i.- ,. tF^r     . 
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corresponds, at a higher level of abstraction, to the activation of an Ada 

pacKage operation. 

Information needed to represent an engine can be extracted from an Ada 

program unit for use in representing the local environment (data path) and the 

state machine (controller). This information is drawn both from the 

specification part and from the body part of the program unit being mapped to 

the next stage. 

Stage 2 representation elaborates intra-program unit constructs while Stage 3 

elaborates inter-program unit communication constructs. The language for Stage 

2 is a stylized but legal form of Ada. 

3. Stage 2: Machine-description-level Ada program 

3.1. The Role of Stage 2 

A Stage 2 program achieves two objectives: 

1. Infers a collection of needed hardware modules from the declaration 
part of the program unit and identifies the needed modules through 
instantiation of generic packages. 

2. Transforms infix expressions represented in the Stage 1 form into 
prefix form. 

The distinction between the control flow and data flow of a program is sharpened 

by the transformation f^om Stage 1 to Stage 2. Thus, in its Stage 2 form, the 

program takes the form of a state machine and the data path it controls. The 

declarative part of the Stage 2 form represents a collection of hardware modules 

(a "data path") inferred from the declarative part of the Stage 1 form. The 

body part of the Stage 2 form represents a state machine whose structure is 

inferred from both the declarative and body parts of the Stage 1 form. The 

Stage 2 language style has two distinguishing features: 

- extensive use of generic building blocks 
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use of the "engine extension" style of representing states and state 
transitions 

2 

The terms "building block" and "module" have specific meanings below. A 

"building block" refers to a generic pacKage instance introduced in Stage 2 to 

model a particular component of the data path. A "module" refers to a 

collection of SLA cells from which the full circuit will be constructed. Every 

generic package instance identified in the Stage 2 representation maps to a 

corresponding Stage 1 SLA module. 

3.2. Stage 2 Examples 

Figure 3-1 is an example of a generic package decj.arat-.on for a building 

block representing a counter. An instantiation of this package (e.g., "package 

C is new Counter") corresponds to the module's "black box" representation (see 

Figure 3-2). The SLA program that corresponds to Figure 3-2 is presented in 

Figure 3-3. 

generic 
lo_value: integer; 
hjL.value: integer; 

— allows one to instantiate 
— counters of various sizes 

package Counter is 
— Function: 

a counter with load,  lookup, 
increment,  and decrement operations 

procedure  Load( 
load_value:  in integer  ); 

procedure increment; 
— Increment by  1  is implied. 

procedure Decrement; 
— Decrement by   1  is implied. 

function LOOKUP return integer; 
— fieturns tne current value, 

end Counter; 

Figure 3-1:      Counter Building Block Package Specification 

With a few exceptions (to be discussed below) all variables and operators in 

the    Stage    1    program    unit    are    transformed    into,  instantiations    of   generic 

v -».*   ■»•-- 
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Figure 3-2:  "Black Box" Representation of a Counter Module 

packages. The Stage 2 code is then restricted to describing actions through the 

use of these instantiated packages. Stage 1 to Stage 2 transformations result 

in code that is composed primarily of function and procedure applications. For 

example, a line of code such as 

A := B + C; 

is transformed into 

A.Write(Add.Go(B.Read, C.Read)); 

wnere A,  B,  C,  and Add are previously instantiated packages.    Thus,  if tne Stage 

1  code includes the object declaration 

A,  B,  C:  integer; 

the corresponding Stage 2 form would exhibit the instantiations 

package A is new Register(word_length => integer); 

package B is new Register(word_length => integer); 

package C is new Register(word_length => integer); 
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Figure 3-3:  SLA Program for Counter Module Using the SCLED Notation 

Furthermore, encountering "+" while parsing Stage 1 code would lead to the 

inclusion of 

package Add is new Adder; 

in tne corresponding declarative part of the Stage 2 code. Kence, the code 

presented in this example would eventually map into a hardware structure 

abstractly presented in Figure 3-k. 

The design of the building blocK set and the design of the SLA module set 

must be coordinated. As a possible means of enforcing the design discipline, a 

Stage 2 programmer is provided with one or more packages that specify the set of 



mmmmmmm. iiiiiiwiiaiaijiuiiiiHiiiniiLiiMiiMwini 

READ C 

STATE 
MACHINE 

0000 

0001 

. 

REGISTER 

READ B 

REGISTER 

GO ADD 

ADDE! 

URTTr A 

REGI iTER 

Figure 3-4:      Hardware Realization of "A := B + C;" 

generic   packages    available.       The   programmer   can   thereby   be   restricted   to 

expressing   algorithms   with   instantiations   and  use   of  the   pre-defined  generic 

packages. 

3.5. The "Engine" Extension to Ada 

The body part of a Stage 2 program is sub-divided into states denoted by 

labels. To represent the mutually independent actions that can occur in the 

same state of a state machine in standard Ada, one could use the "verbose form" 

that declares (and then initiates) a set of dynamically created tasks. A more 

succinct equivalent is possible if we were to include an "engine extension" for 

Ada to specify a similar objective. Used at Stage 2, the engine extension 

allows one to specify a sequence of Ada statements that can be translated into 

concurrent actions. 

An engine clause has the structure illustrated in Figure 3-5.  Within the 

scope of an engine clause, the sequence of statements bounded by two state ( 

iiiiiiiniVfiifiilMltii . wiWi,iW*Mftiitiriii"iaiifciiiiWtiiiliMl 
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engine Example is 
begin 
<<State_Start» — initial actions 

— executed in parallel 

<<State_l» 

«State_2» 

<<State_stop>> 

end Example; 

— actions to be 
■— executed in parallel 

— another set c' actions which 
— can be executed in parallel 

— final state 
null; 

Figure 3-5:  Structure of an Engine Clause for Representing "Transition Graph" 
of a State Machine 

labels, e.g., <<State_1» and <<State_2» above, are actions that can occur in 

parallel. Execution of a "goto" statement within such a (labeled) sequence 

terminates the actions witnin that state (i.e., triggers a state transition). 

(To ennance readability, we follow the convention that the first node of every 

engine clause be laoeled "State.Start" and the final node be labeled 

"State.Scop".) 

westing of engines clauses follows Ada scoping rules. An engine may be 

declared local to another engine just as one procedure can be declared local to 

another procedure. Thus a local "sub-engine" may be called from its containing 

"main-engine". The effect of such a call is to transfer control to the label 

State_Start of the subengine at the time the subengine is called and to return 

control to the main engine wnen the subengine completes. 

Note that this tecnnique does not imply a relationship between state 

transitions and units of time. Although the particular SLA implementation 

chosen for Stage 4 in this work is synchronous, a syntax comparable to the 

engine extension has been oe mapped to asynchronous implementations [4]. An 

algorithm used to determine the operations for which one can specify parallel 

execution, i.e., multiple actions within the same state, is presented in Section 

^^_ 

• 
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5. 

t 

5.4. Building Blocks and Modules 

For the purpose of tnis report, the following building blocks and modules 

nave been designed [6]: Equals, Less_eq, Bool_eq, Counter, Loop_Counter, 

Register, &oolean_fiegister, Memory, and Two_D_Memory. 

Building blocks and modules generally have parameters for specifying word 

lengths. Such specifications are provided by the Stage 2 programmer as part of 

an interactive design process. Thus, most generic package declarations contain 

the formal generic parameter 

type word_length is range <>; 

3.5. Three Intrs-program Unit Communications Protocols 

Three different intra-program unit protocols are defined, corresponding to 

the "function", "procedure", and "procedurE" Stage 2 subprogram declarations. 

Tnese Stage 2 declarations convey assumptions about the number of states 

required for an operation to "complete its job". Different protocols may be 

utilized for invoking various operations within an implemented package. The 

corresponding SLA implementation is invoked with whichever protocol is 

appropriate. Protocols for communication between circuits representing separate 

Ada program units are discussed in Section 6.) 

Operations are divided into two classes: those that return a value (e.g., a 

Read operation) and those that do not (e.g., a Write operation). Hardware 

implementation of the former requires that the module includes storage elements 

to nold the value of the output parameter (or function result). The protocols 

presented below ensure that such storage elements are sampled only after the 

correct values are loaded. In operations that do not return a value, the 

protocols ensure tnat the module completes its job (for example, modification of 

a global value) before a potentially conflicting operation can be initiated. 

.ft«i^^.!«aM^i.^tt«ri^ 
^^■■^^..^-^^..^„-■^^^ 
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The distinguishing characteristics of operations adhering to each of the 

three protocols are as follows: 

- ^inction" ProtOCO]: The operation completes in the same state in 
wtucn a request for the operation reaches the containing module. Two 
cases are implementable: 

f 

1. The function result is always available. 

2. The request is received in pha^e Phi-1 of a given clock cycle 

TooT"*result t0 be available in ph-6Phi-2 oTlTs1^ 

k /U?\t\0n operation ^^ a« the Lookup operation on a Counter 
module) does not need to issue an acknowledge to its requestor thS it 
has Performed xts duty, because it can be assumed that the correct 
result will be available in a known state. correct 

• "Proc^urP" prQtPQO]: The operation completes in the state immediately 
following tne one in which the request reaches the module. As in the 
function protocol, it is not necessary for the procedure operation 
^sucn as the increment operation on a Counter module) to inform the 
requestor that the desired action has been performed. 

Z?^r!^Sr^1\  FOr thiS 0Peration. it cannot be assumed that 
rTJZ completed in the same state in which the request is 
received, or even in the next state. Unlike the two previous 
protocols, it is necessary for the containing module to inform ?he 
requestor when execution of the desired action has been cipleteS 
The scenario is as follows: a requestor initiates a procedurE 
operation by issuing a "Go- signal; the procedurE in turn signals Us 
caller, upon successful completion, vrith an "I'm done" signal We 
call tms convention the "Go/I'm done" protocol. Its use allows the 
introduction of arbitrary delays in the state transitions for clocked 
scnemes tnat exhibit a single thread of control. The protocol, which 
is enforced by construction, ia implemented as follows: 

• Tne requesting engine R sends a "Go" signal that invokes the type 

state -^Tf1.0" .P 0' a containinS module M and then enters a 
state wnere R waits for M to send an "I'm done" signal. 

* The initial state of rt is a wait state for a "Go" signal  A Go 
to

0rp^ "^f th^States the aeration P to commence 1 transition 
to P). After the operation P completes M emits an "I'm done- 
signal before returning to its initial state. 

Tne protocol permits representation of a single thread of control that 
traverses from the requesting engine R to the host module M of the 

?ra
0n!?Mt 0p

r
eration P and back again- The sequence of state 

transitions for every procedurE operation is local to one, and cnlv 
one, engine.  Hence, there is no possibility for contention.  It "is 

I --,,.-,> .-./[»ii v 
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this fact that allows us to use the simple "Go/I'm Done" protocol 
(instead of a somewhat more complex Request/Acknowledge) for intra- 
engine communication. The Read and Write operations on the Memory 
module are examples of the procedurE protocol. 

4. Stage 1 to Stage 2 Transformations L. '. 

4.1. Transforming Simple Expressions 

Simple expressions are transformed in a straightforward way. Registers 

replace variables, comparators replace relational operators, adders replace plus 

signs,  etc.    Such transformations are syntax driven. 

This style of transformation leads to the allocation of possibly redundant 

modules. Clearly, circuits produced by this method tend to be wasteful of "real 

estate". However, timing and communications are simplified in activating 

individual modules, since each Stage 2 call on a subprogram operation of a 

generic instantiation then corresponds to a unique control line in the hardware 

level. Some simple optimizations are possible within tnis framework; for 

example, use of counters where adders are not needed, and use of shift logic, 

wnere suitable,  for multiplication or division. 

4.2. Transforming Control Statements 

The interpretation of control statements (e.g., loop, case, if, subprogram 

calls and task entry calls) lead to control flow changes. We discuss the 

required transformations for sucn constructs in this subsection on a case by 

case oasis. In general, these transformations mimic well-understood strategies 

used by compilers L1J. 

functionsJ. and tasks The initial action to be performed in the 

body parts of procedure, function, and task entries with in parameters is the 

loading of the actual parameter values into the Registers that implement the 

corresponding formal parameters.  Statements directing such actions must be 

- • 
-sr 
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inserted into the Stage 2 program. 

Out parameters also require instantiation of Register packages so their 

values can be loaded into these Registers as if they were local parameters and 

hence mimic the "cop: -restore" parameter passing mechanism demanded (for the 

normal case) by Ada semantics. A similar treatment is required so that function 

values can be properly returned. 

f 

Building blocks that represent formal parameters of program units are derived 

in Stage 2.    For example, if procedure P and function F are specified as: 

procedure F( 
xx: integer; 
yy: integer); 

function F( 
zz: integer) 
return real; 

then four generic pacicages are instantiated: 

package xx is new Register(word_lengtn => in integer); 

package yy is new Register(word_length => in integer); 

package zz is new Register(word_length => in integer); 

package f_result is new Register(word_length => real); 

— For P. 

For F, 

i>--3TATEM£NTS in the simplest case, if-statements are manifested in Stage 2 

as structures of tne form: 

<<State_for_if» if condition then 
goto State_X; 

else 
goto State_Y; 

end if; 

Missing but implioit else clauses are explicitly inserted. For example: 

else 
goto State_<the_state_where_the_2_branches_join>; 

I'ilB—IIIM  ■-inn,ni||-ffi-T----—-■^-^- - ■armi.rttfMii -     "   - —--— 
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it is certainly possible, and in many cases advisable, to include actions in 

the branches before the goto statement, thereby reducing the total number of 

states specified in the machine description. For example, 

if mem_value = 0 then 
pointer := p_find; 
exit; 

end if; 

is transformed into 

declare 
equals_result:   boolean  := false;  — Initialized to 

— false, 
begin 

<<State_4» Equals.Test( 

Kem.value.LookupO, 0, equals_result); 
goto State_5; 

<<State_5>> if equals_result then 
Pointer.Write(P_find.Lookup()); 
goto State_6;      — Goes to exit. 

else — Else is now explicit 
goto State_7; 

end if; 

Notice the use of the boolean variable "equals.result" to represent the value of 

tne condition. The rule followed is that the use of identifiers with "„result" 

as a suffix specifies Stage k routing to a storage element that is located 

within tne module specified by the prefix (e.g., Equals). The storage element 

is loaded with the result of the operation. Every relational operator building 

blocK has such a "buddy" boolean variable. Out parameters in procedures and 

procedurEs, such as the value returned from a memory Read procedurE, are also 

treated this way. 

BLOCKS A block is treated as a parameterless procedure. 

FOR-LOOP? A generic Loop_Counter package that computes and holds the loop 

parameter value is instantiated for eacn Stage 1 for-loop.  This package also 
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stores the value of the upper limit of the discrete range. In case the upper 

bound is a previously declared variable, e.g., Lim, a module that stores Lim's 

value already exists, so the extra storage element is redundant. This 

redundancy is accepted because, at the hardware level, the simplicity of 

communication and saving of extra communications lines appears to outweigh the 

use of extra storage space. Figure 4-1 shows the Stage 1 to Stage 2 

transformation paradigm used for for-loops. 

STAG£ 1 STAGE 2 

— Declaration part 
package Parameter is new Loop_Counter; 

— Instantiation. 

: 
for parameter in A..B 

loop 
Statement_1; 

Statement_2; 

Statement^; 
end loop; 

— Body part 
<<State_X»  Parameter.Load (A, B); 

— Load loop values. 
— A is initial  value. 
— B is upper limit. 

<<State_Y»      if Parameter.Test()    then 
~ Test the parameter 
~ versus upper bound, 

goto State_Y+l; 
— Go to the sequence 
— of statements, 

else 
goto State_Z+1; 
— Exit from loop, 

end if; 
«State_Y+1» Statement.!; 

<<State_Y+2>> Statement_2; 

<<State_Y+N» Statement.»; 

<<State_Z>>  Parameter.Increment(); 
goto State_y; 
— Go back to the test. 

<<State_Z+l» 

— Continue with the 
— rest of the program. 

Figure 4-1:  A Paradigm For-Loop Transformation 

rnsmt sassm 
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tfHTLE-LOOPS While-loop transformations require the instantiation of as many 

building block packages as required to evaluate the while-loop condition. The 

Stage 2 expression of a while-loop whose condition is a simple equality test is 

modeled  in Figure 4-2. 

«State_Y»   Equals.Test( 
first_operand, second_operand, equals_result;, 

goto State_Y+1; 
<<State_Y+l» if equals_result then 

goto State_Y+2; 

else 
goto State_Z+T,    -- Exit the loop. 

end if; 

«State_Y+2» Statement.!;        - Begin loop body. 

• 

«State_X+N» Statement J^; 

<<3tate_Z>>   goto State_Y; 

«3tate_Z+1» — ...rest of program 

Figure 4-2:  Stage 2 Representation of a While-Loop 

5. Thoughts towards a compiler 

Tne method just presented informally emulates a multi-pass compiler that 

accepts as input a Stage 1 Ada program (i.e., a "normal" program confined only 

by restrictions we may choose to impose on the use of Ada) and produces a Stage 

2 program, wnicn is also legal, tnough "stylized" Ada code. This method is 

-compiler-like" in the sense that it is syntax driven and in that the 

transformations are viewed as production rules. 

Tne Stage 1 to Stage 2 transformation involves several passes over a program 

unit. Backtracking within a given pass is sometimes necessary. For instance, a 

pass may begin by scanning the program unit and declaring the instantiation of 

all generic pacRage objects that can be determined at that time, and may end 

„itn the declaration of more package objects that have been determined to be 

necessary while scanning the code. The passes can be organized as follows: 

r.'.ütfci.tte... 
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Pass 1 - Transforms the declaration part of the program unit and the 
simple statements. Declares and instantiates packages that correspond 
to formal parameters and inserts code to write the actual parameter 
values into these packages. 

Pass 2/Part A - Transforms compound statements, that is, loops if 
statements, accept statements and blocks. (Simple statements 
exposed" in this step are also transformed.) Records situations that 

require backtracking. Also records situations that require new 
packages to be instantiated. 

Pass 2/Part B - Backtracks and replaces "temporary" state markers with 
appropriate state numbers. 

Pass 3 - Instantiates new packages whose need has been previously 
recorded. Transfonns expressions that involve relational operators 
and expressions that similarly involve an increase in the number of 
states. 

I 

5.1. Determining concurrency within a state 

Determining which actions may take place in parallel is an important part of 

tne methodology. Reasoning can be applied to specific cases based on the 

function, procedure, and procedurE specifications. However, a general rule is 

desirable. The following principles (constraints) are adhered to: 

1. Jit the ^tage 2 level no two operations of a given package instance 
may be called within a given state.  This applies both to multiple 
calls on a single subprogram contained in a generic package instance 
and to single calls on different subprograms of the same packace 
Thus, tne calls ' 

Point.Load; 
Point.Test; 

must be invoked in separate states, wnereas 

Point.Load; 
Slot.Test; 

I 

or 

Point.Load; 
Slot .Load; 

may be initiated concurrently. 

2. After receiving an appropriate "Go" signal, a module M (executing a 
type procedurE operation; will not recognize another "Go" signal sent 
from a module N until after M raises the matching "I'm done" signal. 
If a module N were to send such a signal, its "Go" signal will be 
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ignored and the action that N requests of M would never take place. 
Furthermore, N runs the risk of mistakenly viewing the "I'm done" 
signal M sends upon completion of the previous operation as intended 
for N and will therefore proceed in error. 

i. The hardware modules developed in this report have no underlying 
storage resource management: they allow for only one "activation 
record" at a given time. Thus, overlapping invocations will result 
in undefined behavior. 

The rule is sufficient for our purposes to ensure proper behavior but no 

claim is made that it is always necessary. (Mote that Ada semantics permit 

concurrent activations of operations within a package, although such 

permissiveness can lead to non-deterministic behavior.) The fact that a unique 

module is created in hardware for every variable, every computation (e.g., 

addition), and every comparison, suggests that control line conflicts will be 

avoided as long as no module is presented with more than one command at a time. 

6. Stage 3: Protocol-definition Ada program 

tin Ada task defines a distinct thread of control. Ordinary subprogram calls 

by a tasK T are regarded as traversals along this thread of control. Since 

contention for subprogram activation has been eliminated by the constraints we 

nave imposed, Go/I'm done protocols can be used safely in such cases. Inter- 

task communication is more complex since two separate threads of control are 

involved and since contention is possible. Such communication is, therefore, 

implemented With a four-cycle Request/Acknowledge protocol. Implementation 

details for both Kinds of communication are introduced in the transformation 

from Stage 2 to Stage 3- 

6.1. Motivation for Stage 3 

Like its predecessor, tne Protocol-definition stage is specified in legal Ada 

code. The discipline introduced in Section 3 is extended. The Protocol- 

definition stage realizes two goals: 

1. wew states are inserted and "Line" packages are instantiated to 

—■MI  
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specify protocols for connnunication between the program units 
expressed in the Stage 1 code. 

Note that the transformations presented thus far have been concerned 
with communications within a given Stage 1 program unit. Since each 
of the original program units maps into a unique state machine/data 
path pair (engine), tasK entry calls, procedure calls, and function 
calls between these units cannot be represented by simple control 
line assertions. Instead, such communication must be implemented 
either using Request/Acknowledge or Go/I'm Done protocols. 

2. State label numbers are converted to binary numbers, primarily to 
facilitate the encoding of the Stage 3 body part as an SLA state 
machine, wnicn takes place in Stage H. 

In the transformation to Stage 3, the list of declared hardware modules is 

completed and the state machine is reduced to a sequence of if-statements, goto 

statements, and subprogram calls representing control line assertions. 

6.2. Implementing Inter-Program Unit Communications Protocols 

Stage 3 inserts protocols only for those program units that are originally 

specified in Stage 1.  Protocols are already defined (in Stage 2) for program 

units that are introduced as a result of building block generic package 

t       instantiations. 

■ 

In hardware .-epresentation each inter-engine communication requires two 

communications lines. Each lin« (i.e., wire) is realized by the instantiation of 
n 

the generic package named "Line". The specification part for Line is: 

generic 
package Line is 

procedure Lift; 
— Function: 

i Assigns tne logical value 1. 
procedure Lower; 
— function: 

Assigns the logical value 0. 
function Test return boolean; 
— function: 

Returns true if wire has logical value 1, 
else returns false, 

end Line; 
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An instance of this package corresponds to a physical line whose level may be 

lowered, raised, or tested. 

6.2.1. Transforming Procedure and Function Calls 

A procedure or function X is mapped from Stage 2 to Stage 3 as followsS 

1. Line packages X.Go and X.Done are instantiated. 

2. The decision "if X_Go.Test()" is inserted as the initial state. (The 
machine remains in this state until X_Go.Test becomes true. Lines are 
always initialized to the logical value 0, regarded here as false.) 

i. "X_Done.Lift" is made the action of the final state. The state 
macnine of X takes the necessary actions to allow the caller to "see" 
the return values at the same time X_Done is sensed true. 

Program units that contain procedure and function calls to other program units 

must also be transformed to reflect the calling protocol. For example, the 

action: 

<<5i.ate_1>> X(some_arguments); 
goto State_2; 

is transformed into: 

-- Call on X 

<<State_1>> X_Go.Lift; 

X(some_arguments);  — The original action, 
goto State_2; 

«State_2» if X_Done.Test then 

— Load tne out parameters/function result 
— into proper register(s). 
goto State_3; 

else 
goto State_2; 

end if; 

Notice cnat the original invocation of X is left in the code. 

6.2.2. Transforming Task Entry Calls and Accept Statements 

The transformation of tasks is similar to that for subprograms. The scheme 

outlined in the previous subsection is followed, although "X_Req" is substituted 

for "X_Go" and "X_Ack" is substituted for "X_Pone".  Additionally, a Line 
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package is instantiated for each entry statement of the task. This Line and the 

XJteq Line are "raised" concurrently by the calling task (via a calls to the 

respective Lift procedures). Each accept alternative in the receiving task 

tests the tasks request line and the corresponding entry statement line before 

performing the desired operation. As an example, consider the task named 

"Storage" that models a Read/Write memory. Storage is specified in Stage 1 as: 

task Storage is 
entry Read( 
address: integer; 
value:  out integer); 

entry Write( 
address: integer; 
value;   integer); 

end Storage; 

The instantiations 

package Storage_Req  is new Line; 
package Storage_Ack  is new Line; 
package Storage_Read is new Line; 
package Storage_Write is new Line; 

must be visible to Storage and all tasKs which can call it 

The body of Storage is realized as: 
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«State_0000» if Storage_Read.Test() and 

Storage_fieq.Test() then 
goto State_0001; 

elsif Storage_Write.Test() and 

Storage_Req.Test() then 
goto State_0100; 

enfl if; 

<<State_0001» accept Read( 
address: integer; 

do 
value:  out integer) 

— Perform read operation. 
— This may take several steps 
— in the general case but here 
— we simplify to one step. 

end Read; 
goto State_0010; 

«StateJDOlO» Storage_Read .Lower(); 
goto State_0110; 

«State_0100» accept Write( 
address: integer; 
value:  integer); 

do 
— Perform write operation 

: 

end Write; 
goto StateJJIOl; 

«Stats_ö 101»    Storage_Write . Lower'(); 
goto Star,e_0110; 

«State_0ll0>>    Storage_Ack.LiftC)j 
— Raise  the acknowledge line. 

goto ■3tate_0111; 

«State_öin>>    if    Storage_Req.Test()    then 
— Keep Ack high until Req is lowered, 

Storage_AcK.Lift(); 
goto State_0111; 

else 
Storage_Ack.Lower(); 
goto State_<some_next_state>; 

end if; 
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A Stage 1 call on the Storage write operation such as 

«State_4»    Storage.Write( 

1, 
Some_Value.Readt)); 

goto State_5; 

is realized in Stage 3 as: 

«State_1000» Storage_Req. LiftO ;     ~ Raise request line. 
Storage_Write.Lift();    ~ Raise write accept line. 
Storage .W"rite( 

1, 
Some_Value.Read()); 

goto State_1001; 

<<State_1001>> if Storage_Ack.Test() then 
Storage_Req.Lower();   — Test acknowledge line. 
goto State_<some_next_state>; 

else 
Storage_Req.Lift (); 
goto State_1001; 

end if; 

1 
Note that the effects of these transformations are to; 

1. Force tasks to follow standard Request/Acknowledge protocol. 

2. Create an implicit case statement which directs the proper accept 
alternative choice (e.g., State_0000 above). 

b.i. Transformation to Binary Numbers 

xn Stage 4, states are encoded as a series of "0" and "1" cells that are 

connected to Sfi flip-flops, for example, <<State_0110>> is realized by placing 

"0", "1", "1", and "0" cells in the same row (AND plane) in adjoining columns a 

matrix called and SLA. The level associated with this row is "raised" whenever 

tnat sequence of values 0110 is stored collectively in the flip-flops. We 

regard raising this row's level as equivalent to being in State 0110. 

To facilitate this encoding, state label numbers are transformed to binary 

representations as the last action of Stage 3. With the completion of the state 
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expansions outlined earlier in this section, the state machine is fully 

specified. 

In summary, Stage 2 to Stage 3 transformations can be performed in two 

passes. The first pass inserts the necessary state and package instantiations 

to specify the communications protocols. The second pass converts the state 

label numbers to binary numbers. 

7. Stage 4: SLA Program 

This section discusses SLA programs and their derivation from Stage 3. 

7.1. Background and Use of SLA Programs 

SLA is an acronym for Storage Logic Array. SLA methodology lends itself to 

the realization of interacting state machine/environment pairs; they are used to 

describe both the state machine and the data path components. The SLA concept 

was originally conceived by S. Patil [15] [14], extendea by Patil and 

Weicn Ll2j L13J, and further extended by K. Smith [18]. Simply put, SLAs are 

"folded" Programmable Logic Arrays (PLAs) in which column and row breaks in both 

the A^iD and OR planes allow tne design of independent arrays in the same 

circuit. "Programming" an SLA involves the placement of symbolic elements (with 

tne nelp of an editor) in a manner tnat may result in representing an arbitrary 

number of independent finite state machines whose interconnection is specified 

by tne SLA program. These symbolic elements may tnen be automatically 

translated into IC layout masks in tne appropriate circuit technology. The 

translation of the SLA progran into an integrated circuit can be viewed as the 

actual placement of finite SLA machines onto the active area of the chip. SLA 

programa make it easy for the designer to visualize the physical layout of the 

circuit from its logical description, A designer who thinks primarily in terms 

of the functional description effectively specifies the physical layout as well. 

Smitn and co-workers have designed SLAs in I2L, NMOS, and CMOS technologies 

[16].  More recent work by Smith's group has extended the SLAs based on a new 
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concept for cell set design. The new circuits, called PPLs, are being primarily 

applied in the design of asynchronous state machines [4], 

Our method uses SLks  in two ways: 

1. The SLA modules previously developed are treated as hardware 
components that replace the Stage 3 generic packages. Note that no 
formal method is employed for the design of the SLA modules. 
However, eacn module has been simulated independently to test its 
correctness. 

2. Tne state machines, including control and feedback lines, are encoded 
as SLAs L13J. 

*e use SLA cells to build a library of composite "macros", which are the 

Stage 4 modules described in Section 5. These modules comprise the data path 

and are inserted using a cell substitution approach. In this sense our use of 

SLAs is similar to the use of macro cells [3] and Associative Logic [7]. 

The particular cell set employed in this work was the 5 micron NMOS set 

described in [17j. An SLA editor (SCLED [20]) and a SLA siauUtor (NS1M [19]) 

were built and tested at Utah; both were used extensively in this study. 

7.2. Encoding of State Machines 

The itage 3 specification of a state, say. State 0110, results in the 

connection of tne appropriate SLA cells such that the row corresponding to State 

0110 goes nigh at the proper time. Further, in each 5tate the levels on columns 

"connected" to the row of a given state are raised when the SLA is in that 

state. Tnese columns are the sources of the control lines, which correspond to 

tne operations to be initiated in tnat state. A two-pass method is employed to 

accomplish tne desired encoding. This technique is presented by referring to a 

simple example. Consider the Stage 1 if-statement construct: 
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if A = B then 
C := C + 1; 

else 
A := B + 1; 

end if; 

I 

With the assumptions that "A" maps into a Register while "B" and "C" map into 

Counters, this construct could be specified in Stage 3 as: 

<<State_0000» Equals.Go(A.Read, B.Lookup, equals_result); 
goto StatejOOOl; 

«StateJDOOl» if equals_result then 
goto State_OCnO; 

else 
goto StateJDOl I; 

end if; 

«State_0010» C.Increment; 
goto State_C110; 

«State_0011» B.Increment; 

goto State_0100; 

«State_0100» A.^rite(B. Lookur ^; 
goto State„0101; 

«State_0101» B.Decrement; 
goto State_0n0; 

«State_0110» null; 

In the first pass, the states of Stage 3 are scanned sequentially. Every 

function and procedure call on a generic package instantiation in Stage 3 is 

transformed into the raising of a control line when tne row corresponding to the 

given state "goes high". If-stateaent«, are transformed into two rows, one for 

eacn possible result of the if. Tne state macnine layout rules employed are: 

1. For simplicity, columns representing test inputs and control line 
outputs that are used to communicate with other state machines 
(program units) are placed on tne left of the state machine and those 
that communicate to local modules are placed on the right. 

2. Rows and columns are annexed as needed as the Stage 3 states are 
scanned. When a new Stage 3 subprogram call is discovered, a column 
is designated to carry the corresponding control line. 

- ■ 
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Figure  7-1   presents the  result of the  initial encoding pass over the Stage 3 

code presented above. 

OOOOO000O0O0OÜOO 
0000000001111111 
iss^se/Mois^so 

1:F      F      F      F      0B0B0B0B 
2: 

5: 
6: 

7: 
6: 
9: 

0 
0 
Ü 

0      0      0 s 
0       0 S   1   R  0 
0       0 S   1       1 

10: 0 0 S   1       0 
11: 
12: 

13: 
14: 

0 
0 
0 
0 

0 S   1  R   1  R 
1 0      0 s 
1       0 S   1  R 
1        1       0 

+ + + 

1   I —> B. Decrement 
I > 
 > 
 > 
 > 
 > 
 > 

A.Write 
B.Increment 
C.Increment 
B.Lookup 
A.Read 
Equals.Go 

result from Equals 

Figure 7-1:  First Pass Stage 4 Encoding 

Note now state 0000 (row 7) raises columns 10, 11, and 12. This row 

corresponds to the "Equals.Go(A.Head, B.Lookup,...)" operations specified for 

state 0000 in tne Stage 3 code above. State 0001 (rows 8 and 9) corresponds to 

the if-statement. HOW 8 "goes hign" if the result from tne comparator carried 

in column 9 is false (i.e. a /= b). Row 9 goes high if the result is true (a = 

h). Mote how new columns are added on the right as new procedure and function 

calls are scanned in the Stage 3 code. Note also how the B. Lookup (column 12) 

is raised in State 0000 (row 7) and in State 0100 (row 12). The second time 

"B. Lookup" is scanned in the Stage 3 code we remember that a column was already 

dedicated to this control line; we don't dedicate another. Since this simple 

circuit does not communicate with other state machines, all control line firings 

are on the right side. 

Kau.     -  
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In the first pass the "+",  "1",  and "O" cells are placed only as the need for 

them is discovered. A dispersed layout often results. The second manual pass 

re-arranges the control lines to group lines that are directed to the same 

module. Thus, the second pass merely clusters the control lines, arranging them 

according to their destination. The effect of the second pass is to simplify 

routing of the control lines to the modules. Figure 7-2 presents the result of 

re-arranging of the columns of figure 7-1. Note how commands going to the same 

module are now on adjacent columns. 

0000000000000000 
0000000001111111 
1234567890123^56 

1:  F      F      F      F      ObOBOBOB 
2: 
3: 
4: 
5: 
6: 
7: 0 0       0       OS      + + 
b: 0 0       0 S   1  fi  0 
9: 0 0       0 S   1       1 

10: 0 0  S   1       0 
11: c 0  S   1   R   1  R 
12: 0 1       0      0 s 
13: 
14: 

0 
0 

1       0 S   1  R 
1        1       0 

I   I—>  C.Increment 
I > B.Decrement 
 > B.Increment 
 >  B.Lookup 
 > A.Write 
 >  A.Read 
 >  Equals.Go 
result  from Equals 

Figure 7-2:      Second Pass Stage 4 Encoding 

7.3.  Layout,  Routing and Busing Issues 

An algorithmic method for cell layout and routing has not yet been 

incorporated into our method. Reference [6] discusses a simple manual routing 

method tnat utilizes the fact that the declaration part of a given Stage 3 

program unit specifies the modules utilized by that unit. 

I 

■ 
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As mentioned earlier, engines that are physical representations of tasks 

communicate through the use of the Request/Acknowledge protocol. In the 

hardware rea^m, such engines communicate via buses. A circuit derived by our 

method may include several buses, which may be private (non-contend ion) or 

public (with potential for contention between the users). Both types support 

the Request/Acknowledge protocol. It is well-known that a Request/Acknowledge 

protocol strategy will not work on a contention bus without some sort of 

arbitration mechanism. The Request/Acknowledge protocol implemented here 

closely follows the scheme outlined by Seitz [16], and appears to be adaptable 

to his arbitration scheme. Bus issues are detailed further in [6j. 

1 

8. Conclusions 

The transformation methodology described in the preceeding sections was 

developed and exercised in conjunction with an extensive and non-trivial case 

study LÖJ. The algorithm developed for that exercise is a possible model for 

the behavior of the Ada selective wait statement, itself initially specified as 

an Ada program consisting of a set of intercommunicating Ada server and 

requestor tasKs. The transformation rules were only applied to a subset of the 

program. Application of the rules resulted in two SLA programs whose behavior 

was tested with the simulator NS1M. 

Tne case study [6j provided a "real" example of rule-based transformations 

whicn covers the significant portion of the Ada-to-Silicon "spectrum". No 

theoretical stumbling blocKs were encountered in this process, which suggests 

that there is nothing in principle to invalidate tne concept that such 

transformations may be automated. On the other hand, we have not yet formalized 

tnese transformation rules as concrete algorithms. There is the additional 

cnallenge of reaching practical and competitive circuits with this approach. 

w'c have experimented the intriguing concept of using Ada itself as an 

intermediate language in the mapping process.  For this purpose we have found 

 --jja"&'1' 
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important ways to exploit Ada's abstraction features: 

1. in mapping Ada program variables to instantiations of generic 
packages to pre-defined IC modules. 

2. In mapping Ada subprogram and task calls to specific hardware 
protocols. 

The end result of successful research in this area can be that the 

traditional hardware logic design activity will become increasingly a 

programming activity tnat is Keyed to the use of high-order programming 

languages for system specification. Such an evolution will progress, however, 

only as rapidly as we succeed in evolving a new class of high-quality compilers 

for hardware. 

— ••.. 
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Abstract 
This describes the status of the Internet Protocol (IP) example being pursued as a case study 

by the Utah Ada to Silicon Project. This document provides three contributions: (1) A general 
introduction to the Internet Protocol for those unfamiliar with it, (2) A discussion and "road 
map" through the structure of the Ada code that spedfies the submodule representing IP, 
which we have named INH_ OUT. and (3) A complete listing of the source Ada code for 
INM_ OUT that is being used to guide the transformation of this submodule into silicon. 
Parts 1 and 2 summarize the function of the IP and our major design decisions. 

Other references [2, 3, 4] also include discussions of the IP case study and our approach to 
mapping the IP into silicon. The source listings in part 3 have been compiled using the Intel 
432 Ada compiler version available to us at this time. We have coded the nomplete 
INM _ OUT submodule in Ada and have succeeded in compiling most of it for execution on the 
Intel iAPX 432 system except for statements and declarations associated with uses of the Ada 
rendezvous construct. 

[As later versions of the Intel compiler become available, we expect not only ic be able to 
compile the full module using rendezvous syntax and semantics, but to execute it in this mode 
as well. In the meantime we are working with a version of the code, not given in this report, 
that simulates each rendezvous via Send/Receive primitives instantiated through use of the 
A da generic package mechanism.] 

^     -*-' 
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■~~~~ + 

Figure i-i:   Protocol layering. 
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receiving modules communicate through parameters packed in the headers of 
data passed to the next level. 

1.2. The Role of the IP 
The IP fundamentally provides a means of transmitting uninterpreted messages (segments) 

between Hosts on possibly different local nets. The INMs accomplish this transmission by 
packaging these segments in special data blocks termed datagrams, for transmission via one 
or more local nets. 

In performing its part of this internetwork service, the IP is concerned with two principal 
duties; 

1. Internet addressing:     pidcing the desired "next hop" gateway for nonlocal 
messages, and 

2. Fragmentation and reassembly: splitting and merging messages that cannot be 
transmitted intact due to inadequate local net packet sizes. 

These duties can be explained metaphorically as follows. The IP functions like a 
department-to-department mail service within an industrial organization. Each department 
has a mail room, which deals with one or more courier services. W hen someone in a source 
department has an item to send to another department, he or she wraps it in an unmarked 
folder and deposits it in an out basket of the local mail room, with a delivery slip attached 
giving instructions. 

The mail room prepares the folder for transmittal by inserting it into a company mail 
envelope, with the delivery instructions written on its exterior. It then selects a courier 
serving the destination department's mail room, and gives the envelope to the service's agent. 
The agent then puts the company mail envelope into one of the service's own standard 
envelopes, and enters it into its shipping system. At the destination the process is reversed: 
the courier agent strips off the courier service envelope and delivers it to the mail room, which 
in turn recreates a delivery slip from the instructions on the company mail envelope, strips of 
the company mail envelope and, puts the folder (with delivery slip attached) into one of the 
department's in baskets. The in basket is selected according standing processing instructions, 
based on the contents of delivery slips. 

However, two complications may arise in accomplishing this folder transmittal: 

1. The courier services available to the source mail room may not directly service 
the destination department. In this case, the mail room determines a (remote) 
courier service directly serving the destination, and looks the service's name up 
in a renting table. This table gives the name of a department whose mail room 
has agreed to transfer mail to the destination department, as well as the name of 
a courier directly serving the transfer department. The source mail room then 
gives its company mail envelope to the shared courier service, which conveys it to 
the transfer department's mail room. The envelope is then relayed out via 
another courier service, which the transfer mail room determines according to its 
own routing table 

2. The second difficulty may be that the given folder size exceeds the capacity of 
largest envelope available from the selected courier service. In Urs case, the 
mail room takes the liberty of partitioning the folder's contents so that each 
portion will fit into a service envelope. However, before passing each portion to 
the courier agent, it marks on the portion's company mail envelope that portion's 
sequential position in the original folder. This permits the portions to be 
reassembled into one folder in the destination mail room. 

This thinly disguised analogy maps into the IP world as follows: 

—A department is a Host, and a courier service is a local net 

—A moü room is an IN M, and each courier agent is an LN M. 

—A Jblder is a data segment for transmission over the catenet. 
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—AnotU basket is a SEND ceill, and an tn basket is a RECV call. Delivery slips 
are SEND/RECV call parameters. 

-Each piece of company mail is a datagram if it contains a complete segment, and a 
(datagram) fragment otherwise (For convenience, we consider unfragmented 
datagrams to be "fragments" as well.) 

— Transfer mml rooms are ge.teways. 

—Finally, a courier mati envelopn is of course a local net packet. 

(End of postal terminology, and resumption of Pcstel terminology.) 

1.3.TheTCM INM Relationship 
The manner by which the TCM communicates with the INM is not standardized. However, 

the IP manual [5] illustrates one possible implementation through a pair of procedure calls 
SEND and RECV. 

Thesending TCM issues an INM call of the form 

SEND(src dat..... BufPTR. len.... ) 

when it wishes to send a segment to a destination Host. Parameters arc and dst give the 
Internet addresses of the source Host (presumably itself) and destination Host, respectively. 
Internet addresses are simply the concatenation of a net number and a Host number. The 
segment to be transmitted is of length len (in 6-bit bytes, or "octets"), and may be found in 
memory location BufPTR. (Omitted parameters will be discussed in section 2.1.) 

If all goes well, this segment will be presented in due course to the TCM at the destination 
Host. It takes delivery of the incoming segment by completing a mating RECV call on its 
INM, which we assume was awaiting its arrival: 

RECV (BufPTR arc. dat..... ten.._ X 

where arc, dst, and len are value-returning ("OUT") parameters, and BufPTR provides a 
pointer to a preallooated segment buffe- in the receiving TCM. Although dst is an OUT 
parameter, we may assume that all segments delivered will have dst equal to the Host's 
Internet address. Note that all through traffic at a gateway is handled by its INM without 
involvement with the Host's higher level protocols (i.e. without TCM SEND/RECV 
handling). 

The TCM, for its part, implements several higher-level aspects of the internet 
communication process: 

—reliability (e.g. acknowledgements and retransmissions); 

—error control at the segment level (i.e. checksumming TCP headers, etc); 

—flow control (controlling the rate at which segments are delivered to the IN M); 

—multiplexing (management of multi-purpose segments); 

—connections (reserved portions of transmission capacity), and 

— precedence and security (managing degrees of urgency and confidentiality of 
segments). 

1.4. The INM LNM R Nations hip 
The interface between the INM and LNM is not specified in [5]. One may speculate, 

however, that it could follow the general form of the SEND/RECV calls at the TCM-INM 
interface. 

That is. when an INM has a fragment to send out on a local net, it issues a SEND call in the 
net's LNM as follows: 
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SEND(src- In. dit_ In. ..^ FBufPTR. Flen) 

Parameters src. In and dst. In give the numbers of the sending and target Hosts on this net 
Recall dst_ In will designate either this fragment's Internet destination Host, or the Host 
serving as its next gateway. FBufPTR and Flen indicate the memory location and extent of 
the fragment constructed by the IN M . 

Delivery of local net packets by LNM s at target Hosts is accomplished by completion of an 
INM call (which again we assume is waiting) of the form: 

RECV(FBufPTR. ....src_ In. dst_ In. Flen), 

where src^ In. dst_ In, and Flen are OUT parameters serving the obvious functions 

It is useful to note the communication functions provided by LNM s: 

—packet formation and transmission; 

—local net status control, 

—routing of packets within each local net. 

2. A Closer Look at BP Fimctionality 

2 1  TCU Interface 
The full parameterization of the SEND/RECV  calls at the TCM-INM   interface is as 

follows: 
SEND(src. dst. prot, TOS. TTL. BufPTR. len. Id. DF. opt, OUT result) 

—src. dst Internet source and destination addresses. 
-prot the next level protocol in effect (e.g. attheTCM level). Several of these have 

already been assigned (see [7]); TCP, for instance, has assigned number 6 

-TOS: type of service (normal, high throughput, etc) requested by the TCM . 

-TTL: time to live, a time (in seconds) after which the data^'am derived from this 
segment can "self-destruct" if not delivered (see section 2.5). 

-BufPTR, len: TCM segment pointers. 
-Id: segment identification tag, for reassembling fragments derived from this 

segment (see section 2.5). 

—DF: a "don't fragment" switch. 
-opt options to be observed in transmitting the segment (see section 2.6). 

-result an OUT parameter in {OK. errorj; OK =   "datagram sent ok"; p-ror = 
"error in arguments, or local network error". 

The corresponding RECV call issued by the TCM at the destination Host has a similar 
parameterization: 

R F f^VfRufPTR   nrol_ 
OUT result OUT src. OUT dst OUT TOS. OUT len. OUT opt) 

The purpose of these parameters should be evident from consideration of the corresponding 
SEND parameters. Note, however. thhttwoareIN (read-only): 

-BufPTR: a pointer to buffer preallocated by the TCM for receipt of the incoming 
segment. 

-prot an indication of which higher level protocol version this RECV call can 
accommodate. 
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2,2. Datagram Fonnattiiig 
l^f-'SftufSS in Ü^W.M' a fruStfu, way of lookin« at P"310«51 teyering is to consider the Revels of envelope nesün« that surrounds the raw data transmitted.  This is illustrated in S 

+  _+  
LNM  parameters      I      local   net   header        I """ 

INM  parameters      I IP   header" "! " """ packet 

TCM  parameters      l"    "Jcrheäder I  -      fragment 
+ . +        segment 
I data   buffer I ■ v u u 
+ __+ ______ v 

Figure 2-1:   Data enveloping. 

fJÜÜT. r6 arD P011061"11«1 Pn^arily with the IP level, it is useful to look in more detail at the 
rormat of an IP fragment (see fig. 2-2). 

»is, 
J^l 2 3 « S 6 7 B 9 0 1 2 3 < 5 67B90123«56T8901 

IVtr. «  IIHL. 8  I Typ« of S»-»lct| Tot«! Unith.'sTfi'   '   '   i ' 
*'*"*~>'*"*">">"*-*-t—>—>-«-*-»-<-*-*-»-*-»-»-» i i 
I IdtnUfloUion ■  111 IFlt.OI      Frafmnt Offitt ■ 0      I 
f*"^r>"*'*rtr*"t"*~>">~*"*~>"*"*~*'*~t~*~* .«-♦-»->-» nud 

IIM . 123    I    h-otoeol > 6 | Itoidtr oh^eksta |       i.-out 
*-*-»-<■«_»_»——f^-t-,-,  ,,,,,.,,.,,, t  i  «  in  i  I       "''"'*■ 

■owe* addrau 

| dtitlnttlon addrau , 

I Opt. Cod« • i | Opt. UB.I 3 | option v.lue | Opt. Cod« ill    • 

I Opt. Un. ■ « |        option vilu«     | Cpt. Cod« « 1 I   words 
♦'♦-♦-♦-♦-♦-♦-»-♦•♦-♦-♦-'-♦■«-'-■-■———^—-^-t-t-t-i i i >., i , 

I Opt. Cod« . y | Opt. Un.a 3 | option value | Opt. Cod« > 0 I    v 
♦—t-»-*-*-*-«^ ■ ■ i-^.—,._f-,-, ,  | 

1 data 

\ J 
. \ on« or «or« 
!  *•*■ I   ootata 
*■ ■*• ' ■ • ■ t t i i i i i i i i i i 

1                     dat* I    * 
 .i.... -iii , , _^___ 

Many  of these fields are directly  transferred  from corresponding  SEND   parameters 
However, a few bear darificaüon: re, ^   incwaa. 

-Vert version of the IP header layout. 

-IHL: total header length, in multiples of 4 octets (32 bit words). 
-TuyPTJ

0u 8er¥ice: a one-octet encoding of the type of service which the datagram 
should be given en route to its destination. (This encoding is act to be mapped to 
other representations as the datagram moves first *.o the local net level and then 
to other networks en route to the destinatin network.) 

-Total length: total length of the datagram, in octets. 

-Fig: three bits bo^bj». where bu must be zero. b,= 1 iff the datagram should not be 
fragmented, and bjs 1 iff this fragment is not the final one of its datagram. 

-Fragment Offset gives the position of this fragment's message data within its 
original segment, in units of 8 octets (64 bits). The first fragment of a datagram 
has offset zero. ■ 
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—Header checksum: from [5], p. 14: 

"The checksum field is the 16 bit one's complement of the one's complement sum of all 18 
bit words in the header. For purposes of computing the checksum, the value of 
the checksum field is zero." 

2.3. The Internet Addressing Function 
rntemet addresses actually have three formats, providing for a few nets with relatively 

many Hosts, and many nets with relatively few Hosts. These formats are: 

-Class A: a lead 0. followed by a 7-bit net name, followed by a 21-bit Host name. 

-Ciass B: a lead 10. followed by a 14-bit net name, followed by a 16-bit Host name 

-Class C: a lead 110. followed by a 21-bit net name, followed by an 8-bit Host 
name. 

Several Class A network names have already been assigned [7]. 

As menüoned in section 1.2, the INM addressing function deals only with outgoing 
datagrams, and amounts to picking the target Host on the next local net. This will involve use 
of: 

1. A gateway table, which will need to be updated periodically to reflect long term 
additions and deletions of nets to the Internet system, as well as shorter term 
changes in gateway availabilities. 

2. Use of specific routing instructions, as given in the datagram options (see section 
2.6). 

2.4. Fragmentation 
Fragmentation occurs on outgoing datagrams which will not fit into a single local net 

padcet. Note that fragment headers can be constructed without examination of the data 
segment to be transmitted. This means that a buffer the size of a local net packet could suffice 
for fragmentation if space is at a premium. The IP specification [5] gives an example 
fragmentation procedure (p. 26). 

2.5. Reassembly 
The IP specification also gives an illustrative reassembly algorithm (p. 28). 

from our perspective are the following: 
The key paints 

-Reassembly is done only at Internet destinations, and not at gateways or other 
intermediate Hosts (since we cannot be sure all fragments derived from a given 
datagram will follow the same routing). 

-Datagram fragments are reunited on the basis of a key formed from four fields of 
the fragment headers: source, destination, protocol, and identification. Sending 
TCMs must choose identification fields such that this 4-tuple is unique 
throughout the Internet system for the lifetime of a datagram. 

-Strangely enough, fragment headers do not include the overall size of a 
(reassembled) datagram. Hence preallocation of a complete buffer for each 
incoming datagram is not generally feasible, unless either a small limit is imposed 
on incoming datagram size, or the datagram arrival rate is assumed to be low. 

-Various anomalies can occur in the arrival of fragments, e.g. duplications, 
reorderings. and omissions. The INM is free to handle these however it wishes 
except that fragments with headers that fail the checksum test must be destroyed' 
Fragments are "aged" by decrementing their TTL field as they pass through the 
Internet system. Each INM handling a fragment charges its processing time, with 
a minimum of one (second) each. Presumably, the TTL for a datagram under 
reassembly is the minimum of the TTLs for its delivered fragments W hen this 
TTL reaches zero, the partially formed datagram is destroyed, and the buffer is 
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2.6. Options 
0 ptiuns indicate special handling for datagrams, as requested by the sending TCU. The use 

of options is optional, but their implementation is mandatory. 

The essential  options are summarized below, omitting "null-options" such as no-ops, 
padding, etc A n asterisk indicates that the option is copied in every derived fragment. 

— •Security: for sending "security, oompartmentalization, handling restrictions, and 
TCC (closeduser group) parameters". 

— *Loose Source and Record Route (LSRR): for specifying a series of internet 
addresses through which a datagram is to be routed. The routine is loose because 
"the gateway or Host IP is allowed to use any route of any number of other 
intermediate gateways to reach the next address in the route". The route is 
recorded in the sense that a pointer packaged as part of the option is advanced as 
each intermediate address is reached. 

-♦Strict Source and Record Route (SSRR> similar to LSRR, except that "the 
gateway or Host IP must send the datagram directly to the next address in the 
source route through only the directly connected network indicated in the next 
address to rsach the next gateway or Host specified in the route." 

— Record Route* requires each INM handling the fragment to concatenate its 
address into the space allocated for this option (if sufficient space remains). 

— •Stream Identifier, "provides a way for the 16-bit SATNET stream identifier to 
be carried through networks that do not support the stream concept." 

—Internet TLmestamp: indicates that each INM handling the fragment should 
concatenate its time of receipt (in milliseconds since midnight UT) into the space 
allocated for this option. 

2.7. Mtemet Control Message Protocol (ICMP) 
The INM must implement special protocol that is companion to the IP for reporting errors in 

datagram transmission and requesting special INM services. This protocol, termed the ICHP 
[6], is mandated as follows: 

"ICM P uses the basic support of IP as if it were a higher level protocol, however, ICM P is 
actually an integral part of IP, and must be implemented in every IP module." 

ICMP datagrams may be recognized by INMs through the special prol= 1 header 
indication. For obvious reasons, ICM P datagrams are not sent regarding errors in delivering 
ICM P datagrams. Briefly, their varieties are as follows: 

1. Destination unreachable: a receiving gateway could not transfer a datagram, 
or a don't fragment request could not be honored. 

2. Time    exceeded:    a   first   fragmant,    or    unfragmented    datagram,    was 
superannuated. 

3. Parameter problem: a datagram header was found to be malformed. 

4. Source quench: a destination Host requests a slower rate of transmission from a 
source Host. 

5. Redirect a gateway advises a Host not to route traffic to a particular distant net 
through it. 

6. Echo or echo reply: used to "reflect" datagrams bade from destinations to 
sources, for testing purposes. 

7. Timestamp or timeatamp reply: similar to echo and e-'.io reply, but with a 
destination timestamp. 

8. Information or information reply: used for querying "what network is this?". 

- iiimilin 
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3. Current Design 
W e summarize here the principal features of the AtoS approach to implementing the INM, 

as well as remarks on the current status of that implementation. 

3.1. Major Design Decisions 
There have been two major design decisions thus far. 

1. The first is to split the INM into three submodules: an INM_ OUT dealing with 
traffic outbound on a given local net, an INM_ IN similarly handling inbound 
traffic and an INM_ SRV tying them together and interfacing to the Host(s). 
W e envision one INM _ IN and INM _ 0UT pair for each local net interface, but 
only one INM _ SRV per INM . 

2. The second decision is to use a two-phase Ada rendezvous to implement both the 
upper (TCM) and lower level (LNM) interfaces. In each case, a task call is 
performed by the initiator of the data transfer action, with the receiver servicing 
the transfer through an appropriate entry. W hen the data transferred has been 
fully processed, a reciprocal rendezvous takes place (with call and entry roles 
reversed) to report the success or failure of that processing. [An alternative 
formulation, based on passing messages via ports such as is done in the 1432 
architecture, is also under consideration.] 

Division of functional responsibilities: 

1.   INM_SRV: 

a. Receive segments from and deliver segments to TCMs in the Host(s) 
sensed. 

b. Accept incoming segments from the INM _ INs, and 

i. deliver via local Host RECV calls all segments so addressed, and 

ii. (if implementing a geteway) route to appropriate INM_ OUTs all 
through traffic 

c. Maintain a gateway transfer table, used to route all outbound segments 
(whether from a local Host or neighboring INM_ IN). If an outbound 
segment has a non-local net name in its destination address, that net 
name is used as a key to select the appropriate next gateway directly 
reachable by a local net served. 

d. Implement ICM P message generation and transfer. 

e. Handle options: 

i. Security: reject all classified traffic, perhaps with an ICMP report 
of "destination unreachable". 

ii. LSRR, 5SRR, and record route. 

iii. Timestamping:   (i.ote   this   requires   e   time   of   day   service, 
presumably from the TCM). 

[Note that all message traffic through the INM_SRV is in segment form; 
datagram (or fragment) form is used solely within INM_ IN and INM_ OUT 
submodules.] 

2. INM_0UT: 

a. Form fragments from segments received from INM _ SRV. 

b. Deliver fragment', to the LNM _ OUT of its assigned local net, along with 
their local net addresses (final or gateway), as provided by INM _ SRV. 

c. Map the Internet type of service parameter to an appropriate local net 
type of service, or reject fragment if this is not possible. 

3. INM_IN: 

a. Receive fragments from the LN M _ IN of its assigned local net. 
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b. Rearaemble fragments into complete datagrams (destination fragments 

c Delete overage and erroneous fragments (note this requires a timing pulse 
at least once each second). y^^ 
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4. Ada Specifications forlNM- OUT     A Road Hap 
The INM _ OUT module, whose functionality is described in the preceding section, has been 

specified in full in Ada code. The purpose of this section is to review the structural 
organization of this code as a set of interrelated A da packages, embedded tasks, and auxiliary 
procedures. The code itself is listed in the Appendix as a series of 14 separate oompilation 
units. 

I 

4.1. CommunicaUon between INM_ OUT and its "neighbor" modules 
To better understand the code organization, it is useful first to visualize the communication 

channels that are assumed to exist between INM _ OUT and other modules [l]. These 
channels suggest the important intertask communication of the Ada code to be described. 
Recognition of these channels determines the gross organization of the code that embodies this 
modular organization. Figure 4-1 shows the channels not only between INM_ OUT and its 
"neighbors", but also identifies two other important channels that are assumed to exist; the 
latter, however, are not detailed within the code to be described. 

I 
INM_S;W !<• '>! MEMORY 

FIFO 

V • 

1                                                         1 
LNM_OUT                                                             | 

Figure 4-1:   Communication channels (tasking interfaces) between INM _ OUT 
and its "neighbor modules". Directed arcs indicate direction 

o* intertask requests (Ada entry calls). Arcs composed of 
asterisks (•) represent assumed communication channels that 

are not now modeled in the Ada code. 

Discussion in the preceding section has already explained the role of the INH_ SRV and 
LNM_OUT modules. The module marked "MEMORY" is, depending on the specific 
implementation, either a memory to which INM _ SRV and INM _ OUT have shared access or 
a control unit that governs access to some such memory unit. The module marked FIFO is 
assumed to be a hardware unit functioning as a first-in-first-out queue. Outbound datagram 
fragment are passed through the FIFO module to LNM _ OUT. The FIFO must be capable of 

( 

1 
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holding at least one (maximum-sized) datagram fragment. The module is assumed to operate 

T^ UTTW* in Figure 4"1  indi«te direcüon of intermodule requests, whidi are 
Solnd and'ou^un^f ^.^ Ada ^ entry ^ <*" sPecify ^nsmi^ion oTbJS «SS^lfS 0^bou.nd »^rmaUon Completion of the rendezvous initiated by an Ada task 
torn tS rX ^i^ have the effect of both sending data to the callee and Veoeivin^ Sa 
DX Jh^ln% ^ th0UÄrh SUCh a "transac"on" may always be initiated by a partS 

St^%Tngre) Jur^uTt)0™811011 ^ ^ Chaimel Can ^ * ™ 0r b0th ^ions^ 

wellhS' to ?IF0 "«L^u^M^pv18 n^ INM - SRV and issues re{'uests t0 LNM- OUT as 
^f«rm!fS« JJ2      1 0 "EM0,RY-    Depending on the nature of these requests, message 
Z^äinn£r^tt"!iOOrIrOinlNIi-0UT-   ^ both directions.   T^ese details a^ 

Requests from INM_ SRV to INM_ OUT are of two kinds: 

^Sfn^M for
A 

the Purple of providing INM _ OUT with initialization 
information An initialization request is a message that supplies INM_ OUT 
valued ^ e and acquire' via MEMORY, the actual initialization 

2Ü^n!S that. ^u^.^nsmission of datagrams. A transmission request 
UF^nv ^^ ^h\Ch INM-0UT O» use to locate and acquirT via 
u t M u K r, the actual datagram prepared (or transshipped) by IN M _ SRV. 

A message request from INM _ OUT to MEMORY may either supply MEMORY with a 
pointer value or receive from MEMORY a data value. uppiy MCM uni wiui a 

nni ^N^m^^11^ ^ by,l^-0^^ the form of a message request to the FIFO 
unit.  INM _ OUT uses the channel to LNM _ OUT to issue requests for confirmation that the 

indmM8 mrr'S a da^ra^ vi,a the FIF0- In a like manner-the SSSTSHTS^ 
?nd_ANB-.0UT 1S used by the former to obtain confirmation that the latter has correctly 
processed the preceding request. ■»•««/ 

IN^S^V^n^f611   wMruSRV and MEM0RY. *hile important to the operation of INM_ SRV. are not relevant to the current discussion. K=      uu « 

4 ?' ^C!f¥e Imd task structure 0' the coircsponding Ada code 
« ™^fnt  fKCOde,each ?f the T100"168 discussed in connection with Figure 4-1 is modelled by 
a package, the pnncipal one for our purposes being the package for INM    OUT which is 
rnm   0 Ä-J ^ir ^        BSih   the   sPe°««tion    part" and    the "boSy   ^art    o! 
i^^l r    ,haVe *?*. 00ded-   By 00ntrasl' " is on,y necessary for our purjos«. to 
ÄÄSfi^"1 ^ f0r the LNM- 0UT' FIF0' and «EMORY modules si^tnly 
AM P

TRV i^»1? areneleVfnTV.ri iheJ^n of INM - 0ÜT-   By ■tail«' reasoning, sin« 
IL   »K       ^u« entry calls into INM _ OUT and not vice versa, it is unnecessary to insider 
K«    «V^Sl^S ^ 0f iNM- SRV: for this reason, there is no package reprSTtS INM_ SRV in the code section displayed in this report. K       B       P «euung 

4.3. Definition packages 
The full Ada code for INM_ OUT. in the form of an Ada package, has been deliberatelv 

f^Ta We'ra^v oflh^"^6 i^ÜS? ^^ 0Ut: the^actofed fnfoTationÄS^ 
ZZ^J *%!*?*** ^ tauxil,ary) definition packages. These packages contain type 
LÄ«n fe afd !Ubl/Pe dflarati°ns and their corresponding representation dauses ^ 
any) as well as constant information (constant declarations); these declarations are exoected to 

In OutP«S, ßn f
SOmKet,me ^u1116 future- Thu3' the "root" definition Pa~kage is named 

in- Out_ Srv_ Defs. because the contained declarative information is common to all three 
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parts of the Internet Module; the subsidiary package Inm_ In_ Out_ Defs contains 
dedarative information common to both INM_IN and INM_OUT and depends on the 
declarative information in In_ Out-Srv_ Defs. Finally, the definition package named 
Inm_ Out„ Defs contains declarative information of relevance only to INM _ OUT and to the 
modules (LNM_ OUT, MEMORY, and FIFO) to which it makes requests for service. Figure 
4-ß shows the full dependency graph that has resulted from this decision to factor out common 
dedarative information. The graph also reveals that the packages representing MEMORY, 
FIFO, and LNM _ OUT modules have also been spedfied to depend on certain of the definition 
packages. 

I      In_Out_Srv_Defs   I 

I I 
I    Inni_In_Out_Def s    I 
I I 

 I  
I 

I I 
I    Inm..Out_Defs   I 

I      I 

I I 
I Memory_Modu1e I 
I I 

Flfo_Module 

I Local_Net_ I 
I  Module    I 

I I 

II II 
I I    Inm_Out_Module   I I 
II II 

Figure 4-2:   Graph illustrating the dependence of the module packages on 
certain auxiliary definition packages. 

I 
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4.4. Tasks defined within the Tnm   Out. Module package 
Three tasks are declared vr ithin the Imii_ Out_ M odule package. 

1. The main task, named Inm_ Out, interfaces with INM_ SRV and with 
LNM _ OUT such that a pipeline effect is achieved for speeding datagrams along 
the outbound data path: Host module —> INM_ SRV —> INH_ OUT —> 
LNM.OUT. 

2. An auxiliary (server) task, named Read- Init_ Parameters, which obtains from 
host-related memory the initial parameter values needed to perform datagram 
transmission. 

3. An auxiliary task named Translate- TOS- Task, which operates in parallel with 
INH_OUT, the main task, by translating type-of-servioe information from 
hostHevel to local-net level encoding. 

The specifications for these three tasks are found in the specification part of 
Inm- Out- Module. The body parts of these three tasks are represented as stubs in the body 
part of Inm_ Out- Module and the actual body parts of these tasks are listed in separate 
compilation units. (See Figure 4--Q.) 

Inm_Out_Modu1e 

InnuOut 

: 

: 

The ma In task        | 
i 

F.ead_I n tt_ Parameters 

1      Aux 11 1 ary task        1 
1 

Transla te_ TOS. .Task 

1      Aux n i ary task        I 
i 

Figure 4-3:   The three tasks embedded in Inm- Out. Module. 

i 
i 

4.5. Important local procedures nf Tnm    OuL_ Module 
Adlivity initiated within the main task (Inm- Out) is delegated in two ways: (a) by entry 

calls to Read- Init_ Parameters, and (b) by calls to one "principal" procedure defined in the 
body part of the containing package (Inm_ Out_ M odule). This procedure is: Do-send, Trhich 
in turn issues calls on other three others procedures, locally define (in Do- send. These are. 
Read, in- header. Compact- Options and Send- fragment. The respective purpose of each of 
these principal and subsidiary procedures is spelled out in the commentary of their respective 
specification parts which are found in the spedfioation part of Do_ send. The body parts of 
these procedures are represented as stubs in the body part of Do_ send and appear as separate 
compilations units in the listed code. 

 m  tM 
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4.6. Section summary 
This ends our short description, or "road map" through the code proper.   There are 14 

separate compilation units given in the Appendix. These are: 

1. In_0ut_Srv._Def8 
2. Inm_In_0ut_Def8 
3. InmJDutJDefs 

4. Menioru_Modu!e 
5. Fifo_nodule 
B. Local_Net_f1odule 

7. Inin_0utJ1odule 

8. IntnJDut 

9. RBad_Ini t_Paraineter8 

18. Translate.TOS.Task 

11. Do_Bend 

12. Read_m..header 

13. Compact_option8 

14. Send_fragment 

— Top-level definition package. 
— Second-level definition package. 
— Second-level definition package. 

— Auxiliary module package. 
— Auxiliary module package. 
— Auxiliary module package. 

— The main package. 

— The main taek. 

— Auxiliary task used by the 
main task, InmJDut. 

— Auxiliary task used by the 
procedure Read_in_headBr. 

— Procedure local to Inm_Out_Hodule 
called by InmJDut. 

— Procedure local to Inm_Out_Hodule. 
called by Do_send. 

— Procedure   local   to InmJDutJIodule 
called  by Do_send. 

— Procedure local to InmJDutJIodule 
called by Do_send. 

,1 
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Appendix 

P««el7 

flda-to-SM icon Project _I 
Unlvtrilt« of Utahl _I 

OoO Internat Protocol INfl.OUT aubaodMl« ZZ 

fld« coda for tha top-laval dafinltion packaga naaadt 11 
In_ 0 ut_ Srr- D efa 

Varaion of Novaabar 1, 1982 _I 

package In_0ut_Srv_0afa la 

— Functions 

"        INfl'sRVClo2urnnt*ln'   d',,nit'on,   n,,d«d   b«   th«   INH.IN,    INfl.OUT,   and 

-- Uaaful bit-flaid typaa. 

subtype b i 11 
■ubtype blt3 
subtype bIt 4 
subtype blt8 
subtype bl tl3 
subtype bi tlB 
»ubtype bi t21 
subtype bl t24 
subtype bl t32 

■hlftit 
shift3: 
■hift4i 
shlftSi 
«hlft6t 
• hi ftSt 
ahlftl3> 
ahlftl6t 

»ubtype octot_ 
type oc ta t.buf 

Tha fo I louIng c 
Mork. NoraalIy 
laaa than or aq 
So, norms I ly co 
intagar would b 
Into a tingle a 
problaa. 

ia 
irj 
im 
im 
im 
im 
im 
im 
im 

I n tagar 
i n tagar 
I n tagar 
intagar 
1ntagar 
1ntagar 
Intagar 
intagar 
intagar 

raufe S..1; 
Tange 8. . 7 ; 

range 0..15; 
range 0..255) 
range 8..8191; 
range 8..655S5; 
range 8..28971S1; 
range 9..16777215; 
range 8..4294967295; 

constant 
constant 
constant 
constant 
constant 
constant 
constant > ■ 
constant i = 

s ■ 
; ■ 

I B 
: = 

2; 
8; 
16, 
32, 
64, 
256, 
8192, 
65536; 

<ypa is bl t8, 

♦•r_typa  is arrayC I n tagar   range <»   of oc ta t_typa , 

oda  had  baan  addad   to  saica   tha  unchackad   convarsloi.  routinaa 
tha   default    storage    (    In   tha   1432   )    for    integer,    that   «ra 

uai   to   16  bita   la   a   ahort  ordinal    (16  bit   fiald). 
nvarting   a   raeord   of   2   bits   intagara   to   a   bitl6 
a   equivalent    to   trying   to   atuff   2   ahort   ordinals 
hort   ordinal.      Tha   rapraaantatIon   specifications   fix   thia 

—   Rapraaantation   apacIfleatlona   aaction. 

byte   t   constant intagar   i=   8, 

for bltl'a Iza 
for bltS'alza 
for blt4'alza 
for bltS'alza 
for bltl3'alza 
for bltlS'alza 
for bi t21,alza 
for bIt24,a iza 
for blt32,alza 

end ln_Out_Srv_Dafa, 

use »1 
use 3, 
use 4> 
use labyta. 
use labyta + 5; 
use 2abyta, 
use 2abyta + 5, 
use Sabyta, 
use ♦»byte; 

•UM 
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«d.-to-Slllcon Proj.ct 
Univ.p.ity of Utah: 

DoO Int.rn., Proloco( INn_0ÜT „^^^ 

"" """ KüMä:  
~ !!r!lon o, Nov,"b«'> i, 1882 
with  Ir._Out_Srv_0«f«', 

«■e     In_Out_Srv_0«f«, 

packoce In»_In_Out_D.f,   i, 

—  Funcflom 

r**.'idHwu.on: VH^V.:::]:'.:' d'nn,<"' - *« bc, 

1Nn    di,i     ""    "—'c.«(0„M(th..Pv.r 

■•«_„,„„,_,, coMtant .=   64, 

:::2:::t^^^';y;,v-•.■.■;, S:: 2'"'""'" ~' • i   --"vrmir.t   constant i =      ■»»   I...J 

-P       » lnt.,.r   ranÄe h..d.r_bUf,.r.l0M_,d(,r,>i 

„.. h"d,r-bu"--hl9h_.ddr...; 
•ubtyp<.h..d.r_oct.t_büff.r_,Up, ' 

»    ««•«-bu«f.r_typ.(h..d,r   ptp) 

»ubtrpe h..d.r_|,ngth   , 

record 
lo:    OCt«f_typ,) 

hl«    OCt.t_lyp,, 
end record; 

^pe h.id.r.buH.r   typ,   i- 
record 

vtrtlon« 
IHLi 
ttfP«_Of_i«PV|c,I 
tOt«|_|,ngthl 

"•ntlf leatlom 
■ lags: 

«ragaant.offtati 
^■•-»o.l Ivas 
protocoIi 
haadar_chaclt«u«i 
«>ctat_buf fan 

end record) 

•   IN"   dat.   for   co-.unlcat.on   „Ith   LNn 

bit4| 
bi t4, 
bltS| 
tMo.octat.racord; 
t«o_octat_pacordj 
blt3, ' 
bltlS| 
bit8, 
bits, 
«Mo_octat_racord, 
octet   buffar    «nn.rii 

'-       «ourca.addraaa. bit32. 
"       — tln.tlon_.ddra..,   i,,« 

♦Ir.t.chackaun   bytat 
..eond_chaeK.uii_byt.: constant i =     i$f 

constant » =     11, 

•^^—. 



—"""' 

V o o 
1 

Ada SpcjciTicationa for the Dod Internet Protocol. 
The INM _ OUT Submodule       Report No. 1 page 19 

»i»x_l n«i_par ke t : constant i = 12S ■ Octat« (arb i trary). 
-- 7???777?? E.I.O. 676777 

»ubtjpe haadar.Morda  ia intagar range 5 .. I6j — Haadar i.ngth In uerda. 
■ublype haadar.octata ia Intagar range 2 6 .. 64) — Haadar langth In uorda. 

— Functional 

function * x o r * ( 
fIrat.oparandt      oct«t_type; 
aacond_oparandi   aetat_typa) 

return octat.typa) 

function * x o r ' ( 
oparandlt    tHO_octat.rarord; 
oparand2:   tHO_CCtat_racord) 

return tHo_octat.racord; 

function  flask ( 
nu«bar_to_ba_«aal(ad_for»al:    intagar; 
»ask_tor««l: Intagar) 

return Intagar; 

--  FunctI onj 
Performs a bit Mica UND oparatlon on 
tha two paatad paraaatara and returna tha Intagar rasult. 

function Sh i f i _r I gh t ( 
nuaiar_to_ba_8hI<tad: intagar; 
ahift.dlatanca:       intagar range 1 

return intagar; 
15) 

— Function! Does equivalent of Intagar divide of nunbar_to_ba_ahif tad 
— by   2 •• fhift_diatanca   raturning tha aquivalant of tha quotient 
— on unsigned (potltlva)  integers. 

— Representation   apac.ficatIona   aactlon. 

for trfo_octat_racord   use 
record 

lo   at 0  range 0   ..   7; 
hi   at 1   range 8   ..   7; 

end record; 

end   In»_ln_0ut_0afa 

package body In_Out_Dafa   ia 

function * x o r " ( 
f i rat_opar*ndi      b i t8; 
sacond.oparundi   bitS) 

return b i 18 

--   Function: 
Returns tha Exclusive OR of tuo octets. 
Tha following lap laaantat ion aarvaa aa « aoftuara gulda only. 

ia 
result, savaa, aavabt bitS; 
«blt, bbi tt bi t8; 

begin 
aavaa  «= fIrat_oparand| 
■avab  i= aacond_oparand; 
raauIt l ■ 0; 

for indax   in 0   ..   7 
loop 

Initialisation. 

CJI'tJ""1 '" <• 
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• bit     s=   savta   rcmtbiftl; 

bblt      !■   savtb   remahlftl; 

■•va«   !■   Shlf t.right davaa,   1); 

■ avab   i=   Shlf t.rlght (aavab,   1)| 

if not abl t   =   bblt   then 

result    i=   result    4-   ahlftl   ••   Indax; 

end loop; 
return rasu 11; 

end; 

- Cat   tha    least 
- al gni fleant   bit. 
- Cat   tha   laaat 
- s 1 gn i fI can t   bit. 
- Str Ip   off   tha   least 
- aignlfleant   bit. 
- Strip   off   tha   laaat 
>  algnlfleant   bit. 

Add   tha   currant   xor   bit« 
- to   tha   raau I t. 

function "xor' < 
oparandli    tuo_octat_racord; 
oparandlt    tuo_octat_r*cord) 

return tuo_oetat_racord 

-- FunctI on» 
Forms tha exclusive OR for corresponding octets of two 
two...oc te t „operands .  Uses abova declared 'xor* function. 
I hopa thla la lagal Rda. (G<-y> Ptaaaa chack).  Ha uaa 
thla function when performing ehecKsumming on tha full 16-blt 
checksums which ara rapraaantad aa tuo_oetat_racorda. 

im 
raauld: tUJ_OCtat_raeord; 

begin 
reau I t 
raau I t 
return 

end; 

.lo 1 = oparandl.lo xor oparand2. I o; 

.hi := oparandl.hl zor oparand2.hi ; 
rasuIt1 

* 

function flask ( 
nuabvr _to_ba_naEkad_foraaI 1    integer; 
aaak  .foraal: integer) 

return   Intagar 

he    fallowing    implementation   sarvas   as   a   software   gulda   only. 

is 
first  .number t Intagar; 
second_number s Intagar; 
risuIt > Intagar; 
Indax : Intagar; 
Basklng_dona : boolaan; 

begin 
— In 11la Iiza variablas. 

flrs:_nuabar 1=   nuabar_to_aask_forn«I; 
aacond_nu«bar t=   aask.foraal; 
rasu It i=0; 
Indax t =   8; 
aaaklng_dona i=   falsa; 

— Do   a   bit   by   bit   AND   of   both  nunbarc   atartlng   fro»   tha 
--   low   ordar   bit. 

while not aaak lng_dona 
loop 

—   Test   to   saa   If   both    low   ordar   bits. 

If (llrst.nuabar   rem 2)   =   i   and  (saeond_nuabar   rcm 2)   ■   1     then 

--   Rdd   tha   currant   bit   Into   tha   rasult. 
rasult   1=   rasult   +2   ••   Indax; 

end if; 

J 
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— Take off the low order bit fron both numbers. 

firtt.nuabor  !■ ShIft_right(fInt.nuabar,  1); 
■tcond_nunb«r t= ShIft_rIght(iteond.nuabart 2)| 

-- If either nunbtr I« xero then urn   «re don«. 

if (f I rst_nuBb*r = 8) or (toeond.nuBbar ■ 8)  then 
■•■kIng_don* t= true; 

else— Incroaent index 
I ndex I =  Index 4- 1; 

end if; 
end loop; 

return result; 
end «ask; 

- 

function Sh I f t_r Ight ( 
number_to_be_shi Had :     integer; 

shift.distance) Integer   range 1   . .   15) 
return t n t a g a r 

Tha   folloHlng   iapIaaantatI on   serves   as   a   softuara   guide   only. 
im 
b^gin 

return nunh«r_to_be_shift ad   /   shIft_dIstanea; 
end Shift_right; 

end ln_0ut_0afs; 

■—^ i — 
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nda-to-SI I icon   Projact 
Univ.rsity   of   Utah: 

DoD   Intorn«t   Protocol    INI1_0UT   subBodul* 

nda   coda   fop   tha   IntaraadIata-lava I   daflnltlon   packaga  nanadi 
Inm-Out_Oefa 

Varalon   of   Novanbar   1,   1982 

with In_Out_Srv_Dafa,    In»_In_0ut_0afai 

uae     In_Out_Srv_Dafa,   InB_In_0ut_Dafa   > 

package Ina_Out_Dafa   is 

--   Func t Ioni 
Thla   packaga   contain«   dafinitlon«   used   in   thr   INH.OUT   Moduli 
and   tha   units   to   which   It    Intarfacaa. 

Block   Diagram  of  Anticipated   Hardware  Realization 

I I 
I INM_SRV !<• 

R 

A 

X + l 

8 

8 

A 

R 

■>l MEMORY 
I 

v I 

FIFO 

Rl   Al 
I      v 

LN   INTERFACE 

—  Conatantat  - 
•ax   toa_table_«Iza«   conrtant I ^tagar   i=   ♦ In   octata. 

.-' 

c 

k ^ 
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— Pctual sizi dupendt on 
— available space In th» 
— hardware representation. 

■ax_local_net_tos_byte_sIze:  conrtant Integer >= 2; 
-- flax number of octets raqulrad 
— to represent the local net TOS. 
-~ He assume that 16 blta la aore 
-- than sufficient to ancoda th« 
-- I oca I na t toa. 
-- (Still not aura we naad 
— thla conatant. E.I.0.) 

convtanl Intagjr >= 8; 
constant Intagar := 1; 

aarIy_tctt 
I a t a _a c k i 

seqmenf.lOH.address: 
aagiiant_hlgh_addraaat 

constant t =     6; 
constant i=      aax.aagmant_langth   -   1; 

— Typaa   uaad   for   Intartaak   coaaunleat Iont 

xt   constant Intagar   i=   4|       —  Data   path  uldthst   chunk   of  addrasa. 
—  SRV  ->  OUT   and   OUT   ->  HEnORY. 

— Coaaunlcation   between   tha 
— INtl.OUT   and   riEtlORY  aodulaa. 

subtype chunk_of_addrB88_typa is Intagar range 6 .. 2 •• x - It 
— Piaca of start addraaa for a datagram. 
— Each placa has x blta. 

tjpe aaaory_raquast_typa  ia( 
Ioad_addrass, 
racsiva_datua_octat)) 

-- Communication between 
-- INH.SRV and INI1_0UT aodulas. 

type srv_connand ist 
Init_l, 
Inlt_2, 
Inlt_3, 
Inlt_4, 
Inlt_5, 
Ini t_6 
lnlt_7, 
sand, 
fast)| 

— Not currantly usad. 
— Not currantly usad. 
— Not currantly uaad. 

y: constant Intagar t=   4) — Odta path width: 
— OUT -> SRV. 

type  out_response    ia( 
sant_ok, 
dont_frBgBant_arror, 
unsupportad_toa, 
bad_haadar, 
bad_arv_coaaand, 
local_nat_tlaa.out, 
I oca I_nat_Brror, 
othsr) | 

— CoaaunicatIon   aaong   tha 
— INn.OUT,   LNtl.OUT   and   FIFO   aodulas. 

st    constant « =   4| --Data   path   width:    OUT   ->  LN. 

type local_nBt_coaaand_typa  is(racaIva_fragaant)t   —  Currantly  a  sat  of   ena. 

ti   constant i =   4;        —  Oat a  path  uidthi    In  -> out. 

J I^J'^IÜ m   .: *" 
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tjpc I oca 1 .ne t _rBEponEe_ lype ia( 
f ragmen t._r«c a ivad.ok, 
fr»qn«nt_not_ race i v«d) ; 

u: constant s = ♦ ; Dafa path width: INHJJUT -> FIFO. 

type fifo„coB»and_typa ii( 
raaal, 

a tnra, 
ratr I ava); 

-- Representation c!auaaa. 

for  memory_r«quest_type  nsc( 
Ioad.addraaa        -> 8, 

receive _datum_octat => 1); 

for arv.conaand 
Inlt_l 
Inlt_2 
Inlt_3 
Inl1_4 
Inlt_5 
I .11_6 
lnll_7 
«and 
taat 

= > 
= > 
= > 
= > 
= > 
= > 
= > 
= > 
= > 

8, 
1, 
2, 
3, 

♦. 
S. 
B, 
7, 
8), 

i>»c< for out_paapan*a 
aant_ol( = > I, 
don t_f ragman t_appor => 1, 
unaupportad_toa = > 2, 
bad_haadar ■ > 8, 
bad_arv_conaand = > 4, 
I oca I _na t _t iMa_ou t => 5, 
I oca I_nat_appor = > 6, 

othap = > 7); 

for  I oca I _ne t _comi»»nd_t ype  U8c( 

paca I va_f raqmant => 8)) 

for  I ocal_nat_paaponaa_typa  use( 
f ragman t_rece i v«d_,otr    => 8, 

fpagaan t_no t_paca i vad  => 1); 

— Arbitrary cholea. Hardware 

— implementers may chooaa tha reverse. 

for     f i T o_co tnmand _t ype 
paaat c >  8, 
a tora = >   1, 
patp I ava   = >  2); 

end  Ina_Out_Dafa; 

;( 

KM -* t 

.  ..    ... 
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i 

Rda-tO-Si I icon   Project 
University   of    Utah: 

DoD   Intarnat   Protocol   INtl.OUT   tubaodula 

Rda   coda   for   tha  auxiliary     packaga  naaadt 
11 cmory _ II odule 

Varaion   of   Novaabar   1,   1982 

with  In»_0ut_Daf»,    ln_0ut_Srv_Dafaj 

use     InB_0ut_Dafa,    In_0ut_Srv_0af■; 

package naaory.rtadu I a   is 

--   Func tI oni 
Rapraaants tha Hanory Mcdula that holda to-ba-aant datagraaa 
aa well aa initialization paranatara naadad by INH.OUT. 

tnak llaBory ia 

-- Func t i om 
Responds to Raquatt antry call to althar racalva x-aizad address 
bytes or aand octata of information froa tha BaBory Bodula to Mhich 
It haa accaaa.  Thia taak ia a pura aarvar, performing a »enory 
funct ion. 

■ 

entry Raquast ( 
request _type_fo!-«a I t 

chunk_of_addraaa_forBaIt 

octat_forja I> 

BaBory_raquaat_typa| 
— Load_addraaa or racaiva_datuB_octat. 

chunk_of_addraai_typa| 
-- Don't cara uhan raquaat_typa_foraaI 
-- racaiva_datuB_octat. 

out oc tat_typa>; 
— Don't cara uhan Ioad_addra*a. 

— Func t ion: 
Uhan raquaat_typa_fornaI ia racaIva_datun_octat, thia antry cople. 
an octat of information frei a rafarancad location In it* 
accaasibla memory, uritaa it into tha octat_forBat parameter, 
and than increments that rafaranca. 
Uhan reques :_t ijpe_f orma I ia I oad_addraaa, thia antry 
"pursues construction" rf a memory address by 'taking in' 
tha x-aizad chunk of b'ta supplied by tha firat argument. 
Tha vnluaa Input for tha aacond or third parameters ara 
'don't caraa', uhan tha firat argument ia, respectively, 
raca i va_datuB_oc tat or ioad.adciraaa . 

end Flaaoryi 

end floaory.riodu I a; 

■MWÜMlIltÜ^. 
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Rda-to-SitIcon  Projact 
University   of   Utah: 

DoD   Intarnat   Protocol   INt1_0UT   aubaodula 

Ada   coda   for   the   package   naaadi 
Fifo_ II odule 

Varslon   of   Novaabar   1,   1982 

with In_Out_Srv_Dafi,    In»i_0u t_Daf »| 

use     In_0ut_Srv_0afa,    In»_0ut_Dafa; 

package F I f o.flodu I a   la 

task F Ifo   ia 

--   Function: 
Sarvar   task   only;    Issuaa   no   callz. 

en try  F I f o _r a q ( 
co«aand_foraaI:   flfo_coa«and_typa; 
octat_fornaIt        octat_typa)| 

— Funt tI on t 
This antry accapts the    following command values: 
raaatt    raaats the FIFO 
store    atoraa an oetat in tha FIFO 
retrieve; ratriavas an octat fro« tha FIFO 

end Fif o; 

end F i f o.flodu la ; 

c 
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fida-t0-3 I  I icon   Project 

Uni van i ty  ol   Utahi 

DoD   Intarnst   Protocol    INn_OUT   lubaodul« 

fida   coda   for   tha   auxiliary   package   named: 
l,ocal_ Net_ IIodule 

Varalon   of   Novaabar   1,   1982 

vith  InB_Out_Dafs; 

U.ie     Inm_Ou t _De< » ; 

package Loca I_Nat_nodula   is 

task Local_Nat   is 

--   FunctI on: 
This task rapraaants tha local nat module, which can racaiva 
and -eturn rasponsas. 

entry Out_raq(coaaand.foraaI :       I oca I_nat.coaaand.typa) 
rasponsa.foraa11   out I oca I_nat_rasponBa_typa); 

-- Func t I oni 
This antry raciavas a valua of co«aand_foraaI from tha Ina_Out taak 
and passes back a rasuIt through rasponsa_foraaI. 
Coaaand valuas ara currently llnitad to only ona valuai 
racaivs_fragaant. 

end LocaI_Nat; 

end Local_Nat_noduI a; 

o 

t 
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rith tlaaory.nodu I a , 
lnn_0ut_0a(«, 
InB_In_Out_Daf«, 
In_Out_Srv_Dafa, 
Unchackad.convara ion; 

package Ina_Out_noduI a   ia 

—   Func tI on J 

This package contains tasK Ina_0ut and an auxiliary procedure named 
Do.sand. Tha task accapts commands fro* tha SERVER module and aeta 
to forward datagrams to tha LOCAL NET module. 

use flaaoryjlodula, Ina.Ou t _Daf s, Ina_In_0u t_Daf s, In_0u t_Srv_Daf ■( 

-- Instancas of Unchackad.convarsI ont 

function Convart_tuosoaa_array_to_racord 
-- Used by Raad.inhaadar. 

new Unchecked_conversion( 
sourca => oc ta t _buf f ar_typa (8 .. 1); 
targat => tuo.octat.racord); 

function Convart_tuoajMa_array_to_inta9ar 
— Usad by Raad_ln_haadar. 

new Uncheck ed_cor, vers i on ( 
sourca => oc ta t _buf f ar_t ypa (8 .. 1)} 
targat = > bl tl6); 

— Usad by Raad.in_haadar, 

function Convart_tuo_octat_racord_to_intagar 
— Usad in Do.sand. 

new Unchecked_conversion( 
sourca => tHO_octat_racord} 
targat ■ > bl tl6)| 

function Convart_,lntagar_to_tHO_octat_racord 

new Unchackad_convarsIon( 
sourca      = > b i 116, 
targat      => tuo_octat_racord); 

Usad   In   Do_sand. 

function Convart_srv_coaaand_to_ehunk_of_addrass 
—  Usad   by   va~lous. 

im 
new   Unchecked_conversion( 

sourca = > srv_coaaand| 
targat => chunk_of_addraas_typa) | 

c 

■wa,   n 
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Ranaaad   talk   «ntrsi 

PflftsZfl 

procedure H«Bopy_r .11. i««t( 
rtquas t _typa_f.    «itl« ■■Bory_r*quat t_typ*| 
chunk.o f _«ddr««n    lu.'ltll chunk._o f _«ddr«is_typ« ; 
oct*t_fora«I: out octat_typ«> 

renames llaaory .Rkqutit; 

—   Eabaddad   ttskl      tha   '■•in   shou" 

task InB_0ut   is 

This    Is   tha   principal    t«sK   of   INII.OUT. 
It   Issuas   cails   on   tha   Co   antry   of   Ra«d_init   paraaatara   and   on 
Out_paq   antrias   in   HEnORV,   FIFO   and   Lsnlout 
as   uail   as   Out_rssat    in   FIFO. 

entry Srv_paq( 
sarvar_eoaaand_datus: srv.eoasand; 
rasponsa_to_sarvar i        out out_rasponsa> ; 

— Function! 
This antry racaivas coaaands froa INn_SRV aodula and 
passas back results through tha paraaatar rasponsa_to_sarvar. 

end In«i_0ut; 

—   Eabaddad   taski      an   *au-<iiiar-j   shou' 

task Raad_inIt.paraaatara   is 

entry Co( 
Init_nua_foraaii     Intagar.ranga 8 .. 7j 
rasponsa:        out out_rasponsa)t 

— Func t i on i 
Cats Inlt.nua addrass chunks from INM.SRV and ships thao ovar to 
tha tha assodatad flaaory aodula, foraing tha bass addrass of tha 
atoraga*block containing tha initialization paraaatars; than 
gata tha initialization paraaatars froa tha llamory aodula. 
Sats out_rasponsa to aithar aand.ok if succassfui or to 
bad_srv_coaaand if unsuccaasfuI. (Can ba unsuccassful if raqulrad 
tos table aiza axcaada available local space.) 

entry Srv_raq( 
carvar_coaaand_datuai     srv_coaaand) 
rasponsa_to_sarvar:   out out_rasponso); 

— Func t ioni 
This antry racaivas coaaands froa tha INtl.SRV aodula. 
Nota that task Ina_0ut has an idantical antry. 

end Raad.init_paraaatars; 

Eabaddad taaki  anothar 'auxiliary shon' 

Translata_TOS_Taak is 

Funct i oni 
Thia pura serve.- task executes concurran t I IJ with Ina.Out whan 
performing a raquastad lookup In a globally accaasibla typa.of.aarvlea 
tranalatlon tabia to dataraina, yaa or naa, Hhathar thara Is a 
loeai-nat typa-of-sarvlea corresponding to tha given typa-of-sarvlca. 
If yaa. tha matched local nat tos value it Indicatad In tha fors of 
a raturnad Indax into tha tos.tabla.  Sand_fragaant uill than uaa 
this valua latar to fish out tha local nat toa valua to ahlp to tha 
Flfo aodula. 
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entry Bag In.translation( 
Ina.toc.bytat      bit8)| 

— Function: 
This antry accept» the pataad (fron INH.SRV) TOS byta. 
Tha rendezvous la i mnie d i a t e I y broken to permit tha calling task 
to raauaa conputat Ion.  In tha "atataaant aaqual" top thla antry'« 

accapt atataaant, tha aarvar talk partoraa tha paqulrad lookup. 
For a auecaaaful coaplatlon of tha search, tha 
suecaaaful.tranalatIon flag la aat to trua, othaPMlaa tha flag 

la aat to falaa. 

entry Sand_raauIt( 
auccaaaful_tpanalatiant 
t os_lndex : 

out boo loan; 
out i n t a g a p 

range 1 aax_toa_tabla_alza)| 

-- Funct ion: 
Sanda back tha result of tha laaadla'aly preceding Bagln_tpanalation 

• ntpy call. If auocaaaful_tpanaI a11 on la tpua, than toa.indax 
rafaranaaa tha toa_tabla alaaant containing tha corresponding 

local nat toa valua. 

end Tpana lata_TOS_Taak; 

— Variable declarations: 

I as t_resuI11 

tiaa_out_ln_al I Ilaaconda: 

out_paaponaa i= aant_ok| 

ll intagar range 1 .. 2a»I6 
-- Coaputabla fpoa 
-- lna_tiaa_out (aaa balou) 
-- In ppocadupa 
-- Raad.lnit_papaaataPB. 
-- Actual ly ua aay net 
-- compute it •flap all. 

local nat_toa_indaKi Intagap range 1 .. aa)<_toa_tab I a_BIia> 
— Valua received fPOM call 
-- fpoa Raad_in_haadap on 
— Trans I ate_TnS_t«5L . 

—Variables to hold initialization 

InM_aax_packa11 

InB_addpaaa_l angtht 

Ina_t iaa_out t 

li 

tHo_octat_paeopdj 
— largest size packet 

— fop tha local nat. 
-- Represented as a pair Of 
-- octata and alao used 
-- aa a 16-bit intagap aftar 
-- applying Unchackad_ 
-- conversion. 

octat.typa; 
— Uaad In Raad_ln_haadap. 

two_octet„record; 

— UaIting tiaa at LN. 
-- Represented aa a pair of 

— octata and alao uaad 
— aa a 16-bit intagar after 
-- applying Unchaekad_ 
-- conversion. 

octat.typa; 
— Early/late, 

ack.typat 

local_nat_typa_of_aepvlca_tabla_paH_aliai octat_typa| 

f 

"        •e-.' 
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r 

nuBb«p_of_local_n«t_typ«i_of_««rvlc«i oct«t_typa| 

dont   car^.oct.t. oct.t.typ«! 
--   Uctd   «t   an   «ctual   papi««t«r   lor   n«BOpy.R«qu«it   «ntpy 
    calls  uhmn  «ddrai«  chunk»   «r«   balng  aovad   to   tha 
—   aaaory   aodula. 

-- Array; 
tos tablai octat buffar.typa(8 .. ■ax_tos_tabla_8Iza - 1J| 

— Tha slza of this tabla 
— dapands on tha storaga 
— spaca avallabla In tha 

i ^ 

? 

— tllscallanaous eonstantst 

dont cars X datum: coMtant chunK.o<_»ddras8_typa «= 8; 
— Used as an actual paraaatar fop Haaory.Raquast antpy 
  calls uhan no addrass chunKs ara actually ■ovad. 
  Hardware laplaatntap may usa IndataraInata valua. 

end Ina_Out_nodula; 

package body Ina.Ou t.flodu I a is 

procedure Do.aand 

-- Functloni 
This procadura sands an Intarnat daiagra« In tha lollowing stapai 

1) Roads tha intarnat haadar. 
2) Translatas Intarnat TOS byta to a local nat TOS. 
3) Constructs fragaants and sand» than to th» local nat. 

Tha option list for all but tha first fragaant ara 
coapactad, and tha chacksua for aach fragaant is coaputad. 

finy »ncountarad arror tarainatas transmission of th» datagraa 
ulth an approprlata valua assignad to tha (global) varlabla, naaad 

latt_r»»ult. 

is separate; 

task body Ina.Out 
is separate; 

task body Tr«n» I a ta_TOS_ta»lc 
is  separate; 

task Raad_lnit.paraaatars 
is separate; 

end   Ina.Out .llodu la; 

— 



r-   •. mmmmm 

Ada Specifications for Che Dod btemet Protocot 
The 1NM_ OUT Submodule      Report No. 1 page as 

Bd«-to-3lI Icon Project 
Unlvtnlty of Utah: 

DoD Internet Protocol IN(1_DUT lubaodula 

Rd* coda for tha body of tha principal taak naaadt 

lnin_ Out 

Version   of   November    1,    1982 

■epmrutc   (I nit.Ou t.flodu I a) 

task body Ina.Out 

—   Function: 
Thit it tha pt Incipal taak of INfl.OUT. 
It iaauaa calla on tha Go antry of Raad.init.paraaatars and on 
Out_raq antriaa In HEnORY, FIFO and L»n_0ut 
aa wall at Out_raaat in FIFO. 

Icoaaand:        arv.coanand; 
lnit_nua:       intagar range 6 .. 7; 
dont_cara_octati octat.typa; -- Used aa a duaay. 

— Harduara InpIaaantora 
— use an Indatarainata 
— vaiua. 

begin 

--   flain   roaaand   loop 
loop 

—   Cat   next   coaaand   froa   tha   aarvar. 
accept Srv.raq ( 

aarvtr_conBand_datuai arv_coBBana; 
raaponaa_to_aarvar :        out out_raaponaa) 

do 
icoaaand   t=   aarvar_coaaand   datua; 
if    icoaaand   ■    taat     then —  Raport   laat   result. 

raaponaa_to_aarvar   i=    laat.raault; 
end if) 

end  Srv_raqj __   Brenn    rendezvous. 

--   Nou   handle   non-test   arv_coaaanda. 
case     Icoaaand      in 

when lnit_.l  I   inlt_2  I   lnit_3  I   init_4     => 
caae    icoaiiand     is 

when  ini t_l   = > 
in I t_nun    : =-    1 j 

when  Ini t„2   ■ > 
in It_nua   I ■   2; 

when Ini t_3   = > 
in It_nuB   t =   3; 

when  ini t_4   ■ > 
in I t_nua   i=   4; 

when others ■ > 
nulli 

end case; 

— Start   up   taak   R«ad_inIt_paraaatara . 
Raad_init_paraBatara.Co( 

ini t_nua_fo'aal      =>   lnlt_nua, 
raaponaa =>   laa t_raau I t) | 

— End   of   init   coaaand   processing.      If   unsuccessful,    tha   raaponaa 
— to   tha   SRV  aodulo   ulii   ba   bad_arv_coaaand. 
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when sand => — Qtt »nd put (aova) all but laat 
— addr_chunk for tha acidraaa 
-- of tha datagram fro« tha 
— SRV to tha tlaaory aodula. 

— Notai In tha folloulng tuo loops ua have a glitch In that ua 
■re aatehlng • aarvar_coBBand_datuB to 
t«P« chunlt_of_addraaa_foPBal.  Look* Ilka ua nasd to 
apply Unohackad_convar«lon.  Thla problem also arlaaa 
In aarliar varalons of thla task. 

for Indax in 1 .. Inlt.nua - 1 
loop 

accept Srv_req ( 
aarvar_coaaand_daiuat     arv.coaaand) 
raaponaa_to_aarvar>   out out rasponaa) 

do 
iconmand >= tar v er_co»>"i»nd_d« t u m ; 
nanory.raquaa t( 

raquatt_typa_for»aI     r > Iuad_addra«8, 
chunk_of_addraaB_fop»aI r > iapvar_co»»and_datu«, 
octet,foraal = > dont_cara_octat>| 

end Srv_reo; 
end loop i 

— Laat addr.chunk of datagram addraaa Is a apaclal easa, dapanding 
-- on ack_typa In affact. 

accept Srv_raq ( 
sarv«r_connand_daturn     srv.COMBand) 
raaponaa_to_ssrva[M   out out_rasponsa) 

do 
tlaBory.raquaat ( 

raquaat.typa.forBal     => I oad.addraaa , 
chunk_o f _addrass_f orsa I => sar var_connand_da tua, 
oclat_f opiea I => don t_cara_oc ta t) { 

— Lata.ack casa, uhjra srv is hald up till In consuaas datagram. 
if ack.typa ■ lata.ack  then 

Do.lend; — D0 4|I remaining processing for 
— tending this datagram. 

end if; 
end Srv_req; 

— Nou aarly_ack casa, uhara srv Is not hald up. 
if ack.tyoa - aarly_ack  then 

Oo_sand; — Do all raaaining proeaasing for 
— sanding    thla   datagram. 

end if) 

whtn othnn = > 
last_rasult   i=   bad_srv_coaBand) 

end 

end  loop; 

end Ina.Out; —  and  of   task   body 

 ^, In»» -«mr 
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flda-to-S I I Icon   Projtct 
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II Read-Init-Parameten tutod  by   In«_0ut) 

Varsion   of   Novaabar   1,   1982 

■eparate  (Inn.Out.tlodu I a) 

task body Raad.InIt.Paranatara   ia 

--   Rccasaad   globalst 

— nuMbar   of   I oca I_nat_typa«_of_aarv I ca« octat_typa 
— local   nat   typ«   of_«arv1ca_tab1a_ron_aIza: octat_typa 
— tM.tlbl.r octat_buff.r_typa 

— Ranaaad   taak   antryi 

— Tha   packaga   Haaory   tlodula   containing   tha   taak   ilaaory   hold« 
— to-ba-««nt   datagram«   a«  uail   ««   Initialization  paraaatar« 

— naadad   by   INH.OUT. 

procedure namory.raqua«t( 
request typ«_for«al: «.amory.raquas t_typa ; 

  Load_addra«« or r«c«Iva_datu«_octBt. 
chunk of addrac«_forB«l:     chunk_of_«ddra««_typ«; 

  Don't cara nhan raqua«t_typ«_fer««I 
— r«c«Iv«_datua_oct«t. 

octot.foraal: out octat_typa) 
  Don't cara uhan load.addrac«. 

renames (1 • mo r y. R aqu• a t) 

  Local variabla daclaratljnt 

II'ThäföiloHlng variabla i« commont.d out. It appaarad only in tha 
— "hl-'h-laval" used to r«ad In tha TOS tabla.  Saa balon. 
— nu bar_of_toa_tabla_octata: Intagar ranga 2 .. «ax.toa.tabIa_«lz« - 1| 
oct«t_r«gl«t«r: octot.typ«; 

begin 
loop 

aCCel?i|Ct0.nU..for..l, bl.4, - For Crt.r'« p.p.r 
- — only; otharHlaa blta 

response: out OUt_r««pon««) 

_ ..„♦ „^. -- fll«o ««an« lnlt_olt. response i= ««nt.OKt "'* — 

— Get fro« th« ««rvar all of th« addr_chunk« n««d«d to for« th« baa« 
-- addraa« In aaaory that holds tha initialization paraaatara and 
 sanda thaaa chunks to tha llanory aodula. 
for Indax in 1 • • In It_nua_foraaI 

'TcceplSrv.r.qC " B«» "«V ***"" v -     i — chunk froa tha 
-- Server flodul«. 

8arv«r_eoaBand_datua«     «rv_coB«and; 
r«»pons«_to_S5rv«r:   out out_r««pons«) 

d0n«mory_r«qu««t( ~ '"« chunk out to th« 
— n«Bory module. 
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. 

raquait_typa_f oraa I =>   I o»jl_«ddi ••■, 
chunt:_of_«ddP«i»_«or«« I    => 

Conv«pt_iPV_coBli«nd_lo_chunlt_of_«ddr«i« 
(■•rv«r_eonaand_datu*), 

oct«t_fop««l = >  dont_cap«_oct«t)j 

end Spv.paqt 
end loop; 

  Gat   tha  6   Individual    Initialization  papanatara   (contalnnd   In   tha 
    next   S   octft«   pacalvad)    Irom   tha   Haaopy   Hodula. 
for  Indax   in i   ■-   8 
loop 

tlaaopy.paquait ( 
paqua8t_typa_fop»ial => paca I va_datu«_oc t at, 
ehunK_oT_iddpaaa_fop«al => dont_capa_X_d«tua, 
octat.fopaal = > octat_paglatap) | 

cose inda> ia 
when 1 = > 
when 2 •-> 
when 3 = > 
when * = > 
when 5 -> 
when 6 = > 
when 7 = > 

when 8 = > 

end CBSC; 
end loop; 

-- Convert tha 
-- tiaa.out -In. 

Ina_aax_packat. lo 
lnM_Max_paelcat. h I 
Ina.addpaaa.langth 
I rni_t li>a_iiut. le 
Inm_\laa.out .hI 
■ek_iypa 

«= octat.paglstapt 
i= oetat.paglatari 
!■ ectat_paglatap| 
• at octat_pag i atap ; 
>= octat_paglatap; 
i = octat_paglatapj 

local_nat_typa_of_8apvlca_tabla_pOH_al2a 
i = octat_pagIatap; 

nuabap_ot_locaI_nat_tgpa8 .of.aapvlca 
t .i octat_pag I atap; 

local nat timeout into a I I I I aaconda.7 
millisecond« i= ln«_tlaa_out / 1888.8; 

— Laft-hand side variable da 

— In Inii_Out_nodu la. Valua I 
-- latap In Do_8and procedure 

-- Nota: Davia never did this 
— hia daalgn. Ia thla atap n 

Nol Ma don't naad thla ata 
alnca tha  quotient can faa 
approximated by a dlv by 

In tha avant Ha naad to 
represent milliseconds. 

cIapad 
a used 

In 
aadad? 

P 

2*»lt 

nuBbap_ 

I in typa of aapvica tpanalatlon tabla. 

Tha folloulng coda In comments la paplacad baton by a 
•lOHap-laval" vapalon that cloaaly paflacta tha hapdwapa 
implementation chosen In Hhlch Ha allalnata tha naad fop 

for a aultIpllap. 

of toa tabla octata t= local_nat_typa_of_aapvIca_tab Ia_POH_BIra 
• nuabap_of_local_nat_typaa_of_8apvlca; 

K to aaa If paqulpad tabla alza exceeds aaxIaua 
iber of toa tablaoctata > «ax.toa.tabIa_a I ia  ihan 

-- Chaclc to aaa If paqulpad tabla alza axcaada aax I aua 
if  nuBbap_of_toa_t«bla_octata > ■ax_toa_tabla_alza  iiian 

respons« I J b ad_s ■• v_co aman d j 

patupn; 

and if; 

for Indax In 1 
i oop 

nuabap_of_toa_table_octata 

na«opy_paquaBt ( 
paquaat_typa_fop«al     => paca I va_datu»_octa t, 

chunlc of addpaaa_fop«al => dont_capa_X_d«tua, 
octat.fopaal => toa.tab I a (Indax)); 

ind loop; 
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declare 

co0:::::^';:;:;:;:; ^j:;;; """--.f.......B.t.tMM.^f ..rvic.t 

loc«l_n.t_typt_of_B«rvlc«_t«bl«_ro«_«lr«| 
lnd•x, lnt«g«p   range 8 

..   nu«b«r_o«_local_ntt_typ«t_of   ■•rvloa 
*   ,0.c*l-n»t-t«P«-Of_i.rvle._t«bU_roii   slz. 

begin '=   "' 
rou_nuBbtr    i=   ff 

loop n 

col.nu.b.r   ,=   8, " ,00P   ^•id,   •"   roM»   •«   "S   table. 

10n«ory_r.qu..t{ "   Inn'r    ,O0P   r'""   ln   on•   P0H   of   T0S   «••«••. 
r.qU..t_typ._for..l =>  r,c.lv,   datu- 

oc": i r-:.
d^'"-,or■•, -> --«-"^J!"."";: ' 

oct.f_for..l =>   to.^t.bl.dnd.x)), 

cs'.nuBbtp   i=   col_nu«b«p   +   1, 
exit when col_nuabar   =    local   net   fun.  «i   . 

iocai_nat_tupa_of_8arvica_tabla_roH_8lza| 
Indax   «=    index   +    1, 

it    Indax   > ■ax_toB_tabla_8l2a     then 
raaponaa   iu   bad_8rv_coB«and, 

endlT" ""  E,<'t   th'  CUrr•n,  •cc",1   »«•»•■•"t. 
e,,d looPI ~   End   innar    loop. 

roM_nuahar   i=   roM.nuBbar   +   1; 

en^ltoo;!,e,, roH-nu'b,r = nü-b;r-v-,o
I
c"-n,,-typ"-of-"-'"» 

endi 
yi —   End   outer    loop. 

—   End   daclara   block. 

end C o; 

end loop; 

end Raad_Inlt_Parjaatar«; 

—   End   of    Init    processing. 

— End   of   outer-most    (Inlflnlta) 
— loop. 
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1 

flda-to-Si I icon   Project 
University    of   Utah: 

DoD   Internat   Protocol    TNt1_0UT   Bubaoduli 

Rd«   coda   (or   tha   body   oi   tha   auxiliary   tailc   naaadi 

Trnnalale_TOS_Tnak (uiad   by   Raad_l n_haadar > 

Version   of    November    1,    1982 

acparnte( Inm. Ou t _nodu la> 

task  body Trans I ata.TOS.Tack 

is 

—   Local   variable   dtclarationci 

index: intagar   range 8 
locaI_toa_bytai   blt8| 
success: boolean; 

Bax_ los_t «b I B_S i ..e   -   1; 

begin 
loop 

accept Begin    t r ans I a t i on ( i nir_t o s_by t e :       bit8) 

do 
local    tos   byte   i=    inn_to>_byt•; 

end Baqln_tran»latlon> 7-   Broak   randozvou«, 

--  Saarch   for   tha   INn_T0S   byt»    in   tha   TÖS   translation   tabla. 
success    I=     false; 
Indsx   t =   8 ; 
declare 

roH_nuBbari    Intaqtr   range 8 

-- Initialize for search. 

number of I oca I_nat_typat_of_»arvica -1 

1= B; 
— Tha value of 
— nu«bar_of_local_not_typa«_of_ 
— carvics la dynamically dsfinsd 
-- in previous action of tha 
— Raad_Init.Paraaatars task. 

be^in 
whilr    ron_nu«bar   < nu«bar_of _loca l_na t_typoi_o f .aarv I ca 

loop 
    Test   for   tha   local_toa_byta   in   tha   TOS   tranalation   tabla. 
if    to«_tabla<lndax)   =    I ocal_tot_byta     then 

\nii*x   t=    Indax   +   Ij —   Indax   nou   points   at 
— local   nat   tos. 

success    s =    true ; 
exit; 

else 
Indax   t=    indax   +    I oca I_nat_typa_of_sarvico_tabIa_roM_8Izaj 

end if; 
rou_number 1= rou_nu«iber + Ij 

end loop; 
end; End of declare block. 
  End of saqual for preceding accspt statsaant. 

accept Sand_rasu 11 ( 
■ uccassfut.transl .tloni  out boo I a an 1 
tos indaxt out intagar 

range 1 •• aax.tos.tabla_sIza) 
— tos_lndax value Is cant to tha 
— global named "Ioca I_neu_fos_1ndex" 
— for usa by Sand_fragaant. 

do 
succiss(uI_trans I at ion !■ success; 
tos.lndax I= index; 
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end S«nd_r«iu)t| 

end loop; 

end Tran*lata.TOS.Task; 

' 

, „ «*..,. 
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Rda-to-SI I icon Projaet 
Univanlty of Utah« 

DoD Intarnat Protocol INn_0UT aubaodula 

Ada coda for tha body of tha prosadurat 

Do-Bend 

Varaion   of   Novaabar   1,   1982 

with Ina_In_Oiit_Dafa, Ina_Out_Dafa; 

use Ina_In_Out_Dafa, Inm_0ut. D«ts ; 

aeparate(Ina_Out_Rodu la) 

procedure Do_aand   la 

-- Func tIoni 
This procadura aands an Intarnat datagraa In tha following atapai 
1) Cat* tha intarnat header froa Haaory.flodu I a. 
2) Datarainaa by antry calla to Tranalata_TOS_Taak If tha 

tha  intarnat TOS byta corraaponda to a valid local nat TOS. 
3) Conatructc fragments and aanda thaa to tha local nat. 

Tha option Met for all but tha first fragment ara 
coapactad and tha checksum for aach fragment ia coaputad. 

Any aneountarad error tarainatas transmission of tha datagram 
with an appropriata (axpI anatory) value assigned to tha (global) 
variabia, naaad iaat.raauit, daclarad in tha Ina.Out.floduI a. 

I — Recessed   globalai 

— unsupportad_tosi out_raaponca; 
— bad_haaderi out.raaponaa) 
— dont_fragaant_arrorj out.raiponaa | 

— Subtypa   declaration: 

aax_lna_addraaa_a Iza:   constant:-   2;        —  Siza   In  octets. 

subtype  Ina_addraaa_buffar_typa   ia 
octat_buffar_typa(«..aax_lna_addra8a_alxa-l)> 

— Daclarationa   of   local   variables: 

lna_addrata_buffars 
header_bu ffar I 

lnm_address_buffar_typa; 
header_üuffer_type; 

-- Haadar racord. 

haadar_octat_arrayi       haadar_octat_buffar_typa; 
— Octat array uaad to stora haadar. 
— In a hardware iiap I aaantation, this 
— array can ba tha aaaa aa the 
— haadar.buffar. 

— Naad to Inaart hara address clauaaa for both haadar.buffar and 
-- haadar_octat_array. 

header_ I angthi 

aagaant_langtht 

haadar.Iangth_typa} 
— Haadar slza In octata. 

Intagar range segnent_Iou_«ddress .. 
aagaant.hlgh_addraas| 

— Langth of sagaant part of datagraa 
-- In octata. 

mmm 
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good_h»»d«r_rasuIt: booluan; 
ok _t OB._t ran» I a 1 i on :        booliianj 

— Racult of the raad_ln_haadar call. 
-- Raault of tha tos_tran»I atI on. 

ok.fragMant.trantMiaalent boolaan; 
»■cond_fragmant: boolaan; 

ti.or«_f ragnant»! 

fragman t_langtht 

— Result of tha Sand_fragaant call. 
— R flag that Indlcatai If tha 
-- currant fragment la tha second 
-- fragaant of tha currant datagram. 

boolean;     -. ft   flag that Indlcatai If thara ara 

-- more fragaanta to ba foraad. 
intagar range 21 .. 

Convart_tHO_octat_racord_to_lntagar 
(Ina.aax.packat)» 

— Uaad to Indl.-.ata tha currant 
-- fragaant'a If.ngth. 

currant_fragaont_offaat i  Intagar range 8 .. 2   »*   16   -   Ij 
-- Indlcatai tha currant fragbint'a 
— offaat Into tha overall data 
— aagaant. 

fragaant_»agmant_langthi  Intagar range 1 .. 

Convart_tno_oc tat_racord_to_lntagar 
(lna_aax_pacKat) - ?8; 

— Uaad to indlcata tha langth of tha 

-- currant fragaant'a data part. 

datagraa_total_langth«    Intagar range 21 .. 2 •• 16 - lj 

— Used to aava tha total langth of 
-- tha currant datagraa. 

chackauai 

chaclciua_H lth_optiona: 
tNO_octat_racord; 
tM0_0C ta t_record • 

-- Chackaua valuat ara davalopad 
-- In these auxiliary variable« and 
-- latar Inaartad Into tha 
-- header_buffar prior to copying 
-- tha haadar to tha Flfo aodula. 

— Conatantat 

fragaant.blt_trua> constant Intagar i= 1| 

-- Uaad to »et tha aora.fragaanta bit 

— In haadarjguffar.f lagt. 
conatont intagar i= 2; 

— Uaad to taat If tha flags field 
-- Indlcatai that no fragaantatIon 
-- la to occur. 

Local procadurai and functional 

do_not_fragaant_trua: 

procedure Raad_ln_haadar( 

good.haadan outboolatn) 

-- FunctI on« 

Thli procadura flnt raada In tha local nat addran of tha 
tha datagraa Into a local nat addraaa buffar and than raada In tha 
datagraa haadar octet by octat Into a haadar buffar. Upon 
successfully completing tha tranafar of tha haadar, tha flag 

good_haadar li lit to trua; otharulia It la aat to falia. 
is separate; 

procedure Coapact_optIena 

-- Function: 

Thla   procadura   la    invoked   ultin   comtructing   tha   lacond   fragaant. 
Tha   procadura   coapacta   tha   Mat   of   optlena   In   tha   haadar  by  keeping 
only   those   optlom   that   ara   flaggad   to  ba  coplad.      TS,   haadar- 
langth  and   total    langth   ara   also   updatad. 

is separate; 

p-occdurc Sand.fragaant ( 
data_fragnant_ilzai bl tl6; 
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EuccBEi f u l_f ragir •n1_trannn i is i on:     out bool*an| 
exp I an«t ion: out out_r«spons■) 

--   Funr t i oni 
Tt It procadur* putt Into tht local not FIFO tht follouing - 
1) local net addratt - local not addratt for tha currant fragaant 
2) local nat TOS     - local nat TOS for tha currant .fragaant 
3) fragment haadar 
4) fragment data - which It pulled out byte by byte from the Heaory 

attociatad uith the INH.SRV module.  The tlze of 
the data fragment It patted at a parameter to thlt procedure. 

Thlt procedure, after ttuffing tha FIFO, uill do a fined entry call 
on tha local net (the call autt be coapleted In the tiae tpeclfled 
by a paraaeter patted down froa INtl.SRV).  Upon tuccettful 
trantaittion of the contentt of the FIFO to the local net, the 
tuccettful_fragaent_trantalttion flag will be aat to true; otheruiae 
it It tet to falta. Tha value attigned to *exp lanaation* conflraa 
the tuccett (tent.ok) or providet the reaton for failure. 

is separate; 

f uncLicn 111 n I nua ( 
firat_operand>   integer) 
tecond_operands  Integer) 

return integer 

II 

c 

—   FunctIont 
Thlt   function   takes   2   operandi   and   returnt   the   ainiaua   of   the 
operandt. 

begin 
if f1rtt.operand   >  tecond_operand   then 

return tecond_operand| 
else 

return fIrtt_operand| 
end if) 

end fl in i mum; 

Body   of   Oo_tend   begint   here. 
begin 

Read_i n_header (good_headar => jood_header_reiu 11) ) 

if not good_headar_retu 11  then 
latt_retult t-    bad_header) 

return) 
end if; 

if not (Convert_tuo_octet_record_to_lnteger( 
headar.buffar.total_length)        > 

Convert_tuo_octet_record_to_lnteger( 
Ina.aax.packat) >   then 

Begin  'tingle packet' cate. 

— Trantfar eheclctua_uIth.optlent, whose value uat computed 
— by Read_in_header, Into the proper a!ot In tha header_buffer. 
header_bu f f er .header_checlrBua i= checktuk-.ii I th_op t lont) 

Send.fragaent( 
data_fragaent_eize => tegaent_l eng th, 
Buccettful_fragaent_trantalttion => ok.fragaent.trantaittIon, 
explanation ■> I aa t_retu I t >) 

retarn) 
end if) 

End 'tingle packet' caaa. 

**  -»-^ i»*~ 

wm 
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Begin "multiple packet' (two or Bor« fragaants) cat». 

— Fragaant tha dataqraa. 
if   haadar_bu f f ar , I lags   =   da_no t_.f ragaan t_trua     then 

lait.ratult   i=   dont_fragaant_arror| 
return) 

end if; 

— Inltiallxa fragaantxtien variables. 
currant_fragnant_offaat   i= 8; 
■ acond_f ragaan t i= lalaa; 
aora.f ragnanta i= trua; 
ok_{ragnant_traniBiaaion  <= trua; 
datagraa.total_langth     J= Convart_tMO_octat_racord_to_lntagar 

(haadar_buffar.total_langth)| 

-- Back out octat containing old flaga from tha chackauB. 
ehackiuB_uIth_optIona.to i= chackaua.HIth_optIona.lo 

zor haadar_oetat_array(6); 

i— Sat aora fragaanta flag in haadar_buffar. 
haadar_buffar.f I aga      i= fragaant.bit_trua| 

-- Update chackauB with octet containing neu flaga value. 
ehackauB_uIth_optIona.Io >- chackauB.»Ith_optIona.lo 

xor haader_octet_array(6)| 

while aora.f ragaant a and ok_f ragaan t.tranaa i aa ion 
loop 

if aacond_fragaant  then 
Coapac t_opt iona; 
aacond.fragnent i= falae; 

end if) 

Iragmant_iength i=   niniauaC 
f i ra t_oparand  ■> da tagraa.tota I _lang th 
cecond_operand - > 

Convert_tuo_oetet_buffer_to_lntegar 
(Ina.aax.packat> >; 

fragaant_aegBent_length t= fragaant_length - header_length; 

— Inaert neu total length into the header and update checkaua. 
-- First back out octets containing total_langth froa the checkaua. 
checkauB_uIth_optiona   t= chackaua.uith_optiona 

zor header_buffer.totaI_length) 

header_buffer.totaI_length i = Convert_integer_to_tuo_octet_record 
(fragBent_length)| 

— Now update checkaua uith octets containng neu totaI_length. 
checkauB_uith_optiona ■■ chackaua.uIth_optI one 

zor hcadar.butfer.total_length; 

-- Teat to aae if ue are sending out the last fragaant. 
if currant.fragment_offaet + fragaant_8egMent_length = 

se^Bant_iength  then 
~ If a < condition, then He 
-- then ue still have another 
-- fragaent to tranafar. 
— Ue ahould not get a > value 
— becauaa the laat fragaant la 
-- computed to contain the 
— the remaining octets of tha 
— data «egaent. 

— Clear aora fragment» bit and adjuat checkaua aa ueI I. 

-- First back out octat containing old flaga from tha checkaua. 
check8UB_uIth_optIona.lo t= ehankaua_HIth_optIona.Io 

Zor header_octet.array(6); 

« 
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haadar_buffar.fI«gs <= 6; 

— Now update ehockaua with octat containing nau flags valu«. 
chack rum_H i t h_op t i on» . I o i= check «un_u i t li_op t i om . I o 

zor haadar.octat_array(6) | 
end ift 

— insert a nau fragment offset Into the header and also adjust chackaua. 

— First back out octets containing fragment offaat fron the chackaua. 
chackaun_uith_optiona <= chackaun.wIth_optIona 

xor Convart_tMOBo»a_«pray_to_rocord< 
header_octet_array(B .. 7) ); 

haadar_buffar.fragmant_offaat )= currant_fragaant_offaat| 

-- Nou update chackaua fiatd in haadar_buffar uith octata updatad for 
-- nau fragaant offsat. 
haadar_buffar.haadar_chackaua i= chaekaua_uith_optlona 

zor Convart_tuoaoaa_array_to_racord( 
haadar_octat_array(B .. 7) ); 

f 
Sand„fragaant( 

data_f ragaant_a iza => aagaant.i angth, 
auccaacfui_fragaant_tran«aiaaion ■> ok_fragaant.tranaaisaion, 
axplanation => I as t _resu I t ) : 

1 
-- Sat up paraaatara for tha naxt tiaa through tha ioop. 
if currant_fragaant_offaat ■ 8  then 

aacond_fragaant t= true; 
end if; 

currant_fragaant_offaat i= 
fragmant_aagnant_iangth 
+ currant_fragaant_offaat; 

if not (currant_fragaant_offaat < aagaant_iangth>  then 
aora_fragaants i= faiaa; 

end if; 

end loop; 

end   Do_s«nd; 

End   "multiple   packat*   caaa. 
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fid«- to-S I r Icon   ProJ«ct 
University   of   Ut/Jhl 

DoD   Inttrnat   Protocol    INfl.OUT   ■ubaodul* 

fid«   coda   for   the   body   of   tha   procadurat 

Read_in_ header    (callad  by  Do_a4,nd) 

Varaion   of   Novaabar   1,   1982 

■eparate  (Ina_0ut.HoduIa.0o_«andJ 

procedure Raad_in_ha«dar 
(good.haadar:    outboolaan) 

— Function: 

Thl« procedure first raada in tha local na( addrass of tha 
tha datayraa into a local nat addraaa buffer and than raada In tha 
datagram header octet by octat Into a header buffar. Upon 
successful iy completing tha trarafar of tha haadar tha flag 
good.haadar la aat to trua otherwise It la aat to falaa 

— In tha course of read.ng in tha haadar, it makes a pair of antru calla 
— tr.n. ata.toa.ta.k to obtain tha local nat typa of "arvlca. M UnS 
— and also computes tha checksums (ona without and ona with the options 

--       UlllrlV't.   I*"','   Ch'.sk'.Umn   K*   ■•«"■"«•»•<■ 1" »"o-octat racord. daclarad (and claarad) In Do.Sand and named e^cksua and 
chaclcsui«_H i th_opt ions, raspact i va lu. 

— Constants: 

• In lBu«_h«adar_langth: constant intagar i=  28; 

hlah^'hi!' ' COMt*nt,= "«I "- UPP^ ♦-bit .ask for an octat. 
liu K hi!^ ' «>Mt«nt'= 224, - Uppar 3-bit Mask for an octat. 
""!-!{! ! «""j"*" ?»! " Lo«   5-bit «ask for an octat. 
IOU-*-bl,, ' oon«tant:= iS, — LOH   4-bit aask for an octat. 

lo^wVT'     ' COMtMtl=   »» " High byta of tMo.oc tat.buf far. 
loH_octat_byta       . conrtant . =   1, -Low  byta of tHo.octatlbuff.r. 

— Recessed globalai 

- chackaua: tuo.octat_racord| — Daclarad In Do sand, 
— chack8u«_Mlth_optionst tMO_octat record; 
— local_nat_toa_lnda.<I   intagar ranga 1 .. «ax.toa.tab la_s lia, 

— Local varlabia dac larat lonss 

octat 
tuo.octats 

I   octat_iypa, 
i   octat_buffar_typa(8   ..   1) , 

—   Renamed   procedures   and    functions« 

procedure l1aaory_raquaat ( 

raquast_typa_foraali aaaory.raquaat   typa; 
chunk_of_addraaa_foraali chunk   of   addrass.typa, 
ortat_foraal. out oc ta t_typ'a) 

rename» flaaory. Raquaa t; 

function flaak ( 

nuabar_to_ba_Ba8kad_foraal:    Intagar, 
aask.foraali Intagar)   return Intagar 

rename« InB_In_Out_Dafs.na«lt, 

— Local function definition: 

function Even ( 
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operand:    Intigar) 
return boo loan 

ia 
begin 

if   operand  rem 2     =   •    then 
return truot 

else 
return (alaaj 

end if; 
end Evan| 

begin 

good_haadar   :=   truj) 

— Gat    the    local   nat   addraaa.      By   convention,    this   field   aluaya   precede« 
— tha   actual   datagraa   to  ba   tant. 
for  indax   in 8   . .    I nin_addraaa_l ang th   -   1 
loop 

Haaory.raquaa t( 
paquaat_typa_f oraa I     => raca I va_da tua.oci at, 
chunl(_of_addr««a_f oraa I => don t_cara_X_da tu», 
ectat_foraal => I na_addraaa_buf f «r (i ndax)) | 

end loopi 

— Gat    tha   header'»   varalon   number   and    length. 
Ra*ory_raqua8t ( 

raquaBt_typa_fop«a I =>  raca I va_da tuB_oc tat, 
chunK_of_addraa8_«or«al    =>  dont_cara_X_datu«, 
oetat.foraal =>   octet); 

haadar_buffar.varaI on   i=   aaak 

haad^r.buffar.IHL 

(nuabar.^o.ba.aaakad.f oraa I    =>  octet, 
■ aal(_fe,-«a I =>   loH_4_bltB>| 

) =   »last 
(nunbar _to_ba_aaal(ad_f oraa I    =>  octat, 
■ a«lt_forBal = >  h I gh_4_b I ts) t 

--   Check    tha   header   varaion   nuabor. 
if    not (haadar_buffar.varaIon   -     4)      then 

good_haadar   im    false; 
return) 

claif    haadar_buffar.IHL   a   4      <     «InIauM.haadar.langth     then 
good_haadar   I«    false; 
retumt 

end if) 

— Updata octata of tha two chaekauaa. 
checksum, lo i=   octat zor chackauB.Io; 
chackaua_HIth_optlona. Io <= octat zor ehackaua.lo) 

— Cat tha typa of aarvlca octat. 
tlaaory.raquaa t ( 

paquaat_typa_for«al     => raea I va_datuB_oc tat, 
ehunk_ef_addrata_feraal ■> don t _care_X_da tu« , 
octat_foraal => haadar_buf tar . typa_of _«ap vlea) j 

— Ua aaka tha flrit antry call on tranalata_toa_taaK. 
Translate_TÜS_Task.Bag In.tranaI at ion(header„buffer.typa_of_aarvIca)| 

— Gat tha total langth half Herd (2 oetatt). 
for Indax in 9.. 1 
loop 

flaaory.raquaa t ( 
reques t_typB_f orea I ■>   r e c e i ve_da t ua_oc t e t , 
chunk_of_address_formaI    =>   dont.care_X_datu», 
octet .forma I =>   tuo.octata(Tndax)) | 
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end loop) 

h««d«p_buH»r. total _li«ngth   t=   Conv«r t _tuoioii«_arp«u_to_p«cord 
(tuo_oct«ti(0..1))| 

— Compute   tha   aagaant'i   langth   In   oetata. 
• agaiant _langth 

i=   Convart_tnoao«a_array_to_lntagar<tMO_octat»(e. . 1))   -   haadar.langthj 

— Updata   tha   two   chaekauaa. 
chackaua ) =   chackaua     xor 

Convart_tMOBoaa_apray_to_racord(tMO_octat8(8..1))j 

chackauB.ui th_opt lona   t=   chaclcaua_u I t h_op t lona     xor 
Convapt_tMoaoan_app«y_to_pacopd(tHO_octat«(0..1))| 

— Gat   tha   idant11ieation  half   uopd   (2  oetata). 
for  Indax   in (. • 1 
loop 

tlraopy.paquaa t ( 
paqua8t_typa_fopaa I     => paca I va_da tua_octa t, 
chunk.of.addpaaa.topaa I => don t _capa_X_datua, 
octat.topaal => tuo_octatB (Indax))) 

end loop; 

haadap_buffap.Idant MI cat Ion i= Convapt_tH08oaa_apray_to_pacopd( 
tHO_oeta ta(>..1))| 

— Updata tha txo chackauai. 
chackaua i= chackaua  zor 

Convapt_tHOBOaa_appay_to_pacopd(tMO_octat8(t..l))j 

chackBua.ulth_optlona i= chackaua.«Ith_optIona  xor 
Convapt_tHOBoaa_appay_to_pacopd(two_oetat8<t..l))| 

 Gat tha flaga (3 blta) ar.d tha fragment offset (13 bits). 

for I ndax in 6 . . 1 
loop 

tluBOpy.paquaa t ( . 
paquaBt_typa_fopaa I     => paca 1 va_da tua_oc tat, 
chunk_of_addpaBB_fopaa I => don t_capa_X_datuB, 
octat.topaal ■> tuo.oc tats (indax)); 

end loop) 

haadap.buffar. flags aaak 
(nuabap_to_ba_aaskad_fopaa I => 

tuo_octatB(hlgh_octat_byta)l 
aaak.fopaal =>   h lgh_3_b I tt) ; 

haadap_buffap.fp»ä«ant_offaat i= 
aaakT 

nuabar_tr ,.ba_aaskad_«0PBa I => tuo.oc ta ta (h Igh.oc t at_by ta) , 
aaak.föraäl ' => l0H_5_blta) 

a ahlftS + tuo.ectata(lou_actat_byta) | 

— Updata tha tuo chaekauaa. 
chackaua i ■ chackaua  xor 

Convapt_tHoaoaa_appay_to_paeopd(tuo_octatB(»..l))j 

chackBUB_Hlth_optIons i= chaekaua.«Ith_optlona  xor 
Convapt_tHOBOaa_appay_to_paCOPd(tHO_octat«(t..l)); 

— Gat tha tlaa-to-llva oetat. 
naaopy.paquaat( 

paquaBt_typa_fopaal     => paea I va_da tua_oc ta t, 
chunk_of_addpaBB_foPBal => dont_capa_X_datua, 
octat.fopaal => haadap.buf lap . t laa_to_l I va); 

— Updata tha two chaekauBa. 
chackaua.lo t= chackaua. lo  xor 

haadap.buffap.tlaa.ta.liva| 
chackBuB_Hlth_optlonB.lo «= chackBUB.HIth_optIona.lo xor 

haadap.buflap.tlaa.to.llva; 
mm   Gat tha protocol octat. 

c 
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n«Borg_P»qu«it ( 
r«qui«t_typ«_«0PB«l => ric» I v«_d« tua.oc til, 
chunk o? •ddr«ii_«orii«l => eiont_e«r«_X_dMu«, 
oct.tlfop««! => ht«dtr_buMtr.protocol)! 

  Updata tha tuo chacksuaa. 
chaokaun.hl <= chackauB.hl  xor 

haadar.butfar.ppotocolj 
chackau« «Ith.optlona.hl t= chackauB.MIth_opt1ona. h I  «or 

haadar..buHar.protocol; 

— Cot tha haadar chackau« half Herd (2 octata) and dump It on tha floor. 

  It'a not naadad. 
for I n d a x i n 8 . . 1 
loop 
na»ory_raquaat( 

paquaat.typa.fofBal => paca I va_da tun.oc tat, 
chunk oT addpaaa.toPBal => don t_capa_X_da tu«, 
oetat.topaal => tHO_oc t a ta (Indax) >; 

end loop; 

— Cat tha aoupca and deatlnatlon addpaaaaa and tha raat ol tha 
— haadap buflap uhlch conalata of tha option octata.  FOP all octata 
— paat tha tHar.tlath, updata only ona chackau«. Nota: no convapalon 

— pout Ina la naadad hapa. 

for Indax in 12 .. haadap_langth - 1 

loop 
flaiiiopy_paquaa t ( 

paquaat_typa_fop»al =>  paca I va_da tu^.oc tat, 
chunk_o7_addpaBa_«op«al   = >  don t_cara .X.datui», ,,..,». 
octatlforoal =>  haadap_buf fap. octa t _buf fap ( Indax)) | 

if Evan (Indax)      and then    indax   <  28   then 
rhackauM.lo «■   chackaun.lo      xor 

h-a-tp_b(|||tp#00t-t_kul«,r(lnd«K)| 
chackau»_ulth_optlona. lo   :=   chackaui._Hith_optlona.lo      xor 

haadop_buffap.octat.buffap(Indax)| 

elmf    Evan( Indax)      and then     Indax   >=   28   then 
chackau«_Mlth_optlona.lo   .=   chackau-_-lth_op1.ona.lo      xor 

haadap_buffap.octat_buffap(Indax)j 

claif    not Evan ( indax)   and then  Indax   <  28  then 
^h.rk»u« hi :~   chacl.auB.hl     xor 
ehaekaua.n. h,,d,P_buffap.oct.t_buffap(Indax), 

chackaua_Hlth_option..hl   .=   chackau-.uIth_optlona.h1      xor 
haidap_buffap.octat_buffap(Indax); 

else    —     not   Evan(lndax)   and   than   Indax   >=   28   than 
chackauo  Hlth_optlona.hl   «=   chackaus.MIth.optlona.hI      xor 

hta<|#r_bulf-r.i0t,lj,uffar<lii<M>i 

end  if; 

—  Ua   «aka   tha  aacond   antpy  call   on  TparaIata_T0S_Ta8k. 
Tpanalata_TOS_Taak.Sand_paault( 

auccaaalui    tpanalatlon   =>  good.hoadap, 
tea   Indax =>   loca l_na t_t oa_l ndax) | 
t0,-,na"x „  Cood.haadap   la  aat   falao   if 

 tpanalatlon   la   unauceoaafu 11 

    In  uhlch   caaa   tha   valua  obtained 
    for   loeal.nat.toa.lndax   la 
—   uiI I   ba   Iqnopad. 

end loopi 

end Raad_ln_haadap| 

tt '-+'*     ■«•»" 
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Rda-to-SI I icon Projact 
Univanlt^ of Utahi 

DoD Intarnat Protocol INn_0UT aubaodula 

Ada coda «or tha body of thu procadurai 

Compact—optiona     (callad by Do.aand) 

Varalon of Novaabar 1, 1982 

sepnrnU.( Ina_0ut_l1odula.Do_sa-d) 

procedure Coapact_optiona 

— Func t I oni 
This procadura I« Invokad uhan constructing tha aacond fragaant 
(and only tha aacond fragaant) of a datagraa. 
Tha procadura coapvcta tha Mat of optiona In tha haadar by kaaplng 
only thota optiona that ara flaggad to ba copiad.  Tha haadar langth 
and total langth ara alao updata-1 aa wall aa tha chackaua.  Tha 
valua of chackaua_uith_optIona is racoaputad froa froa tha valua of 
chackaua 

is 
(jeaaaad globaI a. 

— chackauat tHo_octat_racord( 
— chackaua_Hith_optionai tHo_octat_racord| 

-- Subtypa declaration: 

subtype IndaxB.typa is intagar range 8 .. 2 •* 6 - 1) 
— Because max haadar aiza +  64 octatt. 

— Constanta: 

option_offaati conatant intagar   t=   28| 
— Of faat    (in   octata) 
--   indicating   uhara   tha 
--  optiona   list   baglns. 

haadar_length_Hith_no_optionai   conatant intagar   :=   2P; 
copy_op t ion.truat constant Intagar   >=   1; 

— Flag  valua   indicating 
--   that   tha   currant   option   la 
--  ba   copiad   to  all   fragaants. 

—   Local    variable   declarations: 

nau_haadar_langthi indax6_typa; 
options_langtht index6_type; 
currant_opt ion_langtht    Indax6_typa; 

laading_curaort 

traI Iing_cursor t 

Indox6_type; 

Indax6_typa; 

nuabar_of_pad_octatai    Intagar   range 8 

begin 

3! 

— In   octata. 
-- Langth of options list. 
-- Lang";h of a candidate 
" option. 
-- Indicataa naxt option 
-- considarad for copying. 
— Indicates slot In haadar 
-- to racalva tha naxt 
-- cop lad opt Ion. 

—   Doas   this  haadcr has  any   options? 
if haadar_iangth   <= haadar_langth_uith_no_optiena   then 

return; --   There   ara   no   options   to 
end if; —   to   "coapact". 

--    Initialize   variables. 
optlons_langth     i=   haadar.langth   -   haadar_iangth_HIth_no_optIonai 

•< 
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I «ading_cur»or  is 8; 
tra I I i ng.eursor i= 0| 

-- Inltlallz« ehtektuM_HIth_optIom fro* chacksua. 
ehackauH.HIth_opt lona := ehackaua; 

— Ha uca < rather than < = 
-- to avoid scanning tha 
-- taralnal octal, Mhlch auat 
-- and *and-of-optIona-lIst* 
--   oc ta *. 

—   Ragln    cumpactlng    flaggari    options. 

while  laad I ng.euranr   < op 11 ons_lsngth 

loop 
-- Is this option raprasantad as a slngla or multiple octet? 
-- Dlscrialnata by axaalnlng tha option's number. 
if haadar.buffar.octat_buffar( 

optlon_offsat + laadIng.cursor)  rem shifts   <  2  then 
currant_optlon_langth t= 1; 

else 

— Gat tha naxt option octat. It contains tha option length as Its 
— value. 
cur rant_opt lon_langth := haadar_butfar.octat_buflar( 

optlon_offsat + 1 + laading_cursor); 
end if) 

-- Determine whether or not this option should ba coplad. 
if Shi f t_r Ight ( 

haadsr_buffar. octat_buffar(optlon_oftsst + laadIng.cursor), 7) 
■ copy_option_trua  then r 

for copy_lndax in •      currant_optIon_langth - 1 
loop 

haadar_buffai-.octat_buffsr(optlon_offaat + 
trailing .cursor -I- copy.indax) 

:= haadar_buffar.octat_buf!ar(optIon_offaat + 
I sad Ing_cursor + copy.lndax); 

— Updaia ch«cksum_uIth_optIons. Toggla on odd- and avan-vatuad 
— bytas In completed options field. 
if  (trailing_cursor 4- copy_indsx> mod 2 = 8  then 

chacksua.w 11 h_op t I ons . I o t= cheo ,um_H i th_op t i ons . I o xar 
haadar_buffar.octat_buffar( 

opt Ion_o f fsat + 
traiIlng_cursor + copy_indax)| 

else 
chackf.un_u I th_op t lons.h I I J chacksua.u I th_op 11 ons. h I xor 

hsadar^buffar.octat_buffar( 
op tIon_of fast + 
tra I Mng_cursor 4 copy_lndax)| 

end ifi 
end loop; 

— Update tha traI I Ing_cursor. 
traI Iing.cursor i= traI I Ing_cursor + currant.option_langth; 
end if; 

— Updata tha laadln;_cursor. 
laadIng_cursor t= laadIng_curaor + currant_optlon_langth; 

end loop; 

— Pad out tha laat option Hord ulth pad oetats (Including thb last one, 
— Mhlch Is an and-of-aIl-optlona octat) until Ma hava raachad a 32-b 11 
— boundary. 

nuMbar_of_pad_octata   t=   4   -   (traM lng_cursor   modi); 
for  copy_index   in 8   . .    number_of_pad_octet»   -   2 
loop 
— Intart a V««* octat  (= ■88888881'). 
haadar buffar.octat buffar(op11 on offsat 4- tra I Mng_euraor + copy_lndax) 

«= 1» 

— 
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— updatt ch«cit»u«i_Hith_opiion« Hith pad octtt (= "aeeeeeei"). 
ch«clciuB_Hl th_opt lorn i ^ chacltauB.H I th_opt Ion«  xorlj 

end loop; 

  Nou Inaart tha laat pad octat. 
— Inaart an "and jf-aI I-optIona" octat  (= "88888888"). 
  Note that tha xaro valua oi   tha and-ol-a!l-optIona octat 
  Mill not Chang» tha valua of tha eurrant chackauaj hanca thara I« 
  no updata of tha checksum for thla octat. 

haadar_buff»r.oetat.buffar( 
option offaat + traI I Ing.curaor + nu«bar_of_pad_octata - 1) 

.= 8) 

naH_haadar_langth 
i= optlon_offaat + traiI Ing_cupaop + nuabar_of_pad_octataj 

  Updata tha total langth flald and tha chackauM. 

— Flrat back out octata containing total_langth fro» tha chacKauB. 
checksum Mlth_optlon8 i= chacKau«_H Ith_optIona  mor 

Convart_tHoao«a_array_to_r»cord( 
ha«dap_octat_arpay(2 .. 3))5 

haadar buffar,totaI.langth := Convart_lntagar_to_tHO_oetat_pacord( 
ConvaPt_tHO_octat_recopd_to_lntagapt 

haadap_buffap.total_langth) 
- haadap.langth - naM_haad»p_langth)j 

-- Nou updata chackau« ulth octata containing nau total.langth. 
chackBUB.ul th_opt lona ;= chack 8U«I_M I th_op t lona  xor 

Convapt_tuoio«ia_appay_to_pacopd( 
haadap_octat_appay(2 .. 3)>; 

— Updata tha IHL fiald and tha chackaua. 
— Back out octat containing old IHL valua fpo« tha chackau«. 
checksum ulth optlona.lo i= chackBU«_HIth_optIona. I o 

xor haadap_octat_apray (8) ; 

h»ad»p_buffap.IHL := Shift_pIght(naH_h»adap_langth , ♦)j 

-- Updata chackau« ulth octat containing nau IHL valua. 
chackauauith optlona.lo J= chack BU«I_H I th_op t i ona. I O 

xor haadap_oct-t_appay (8) i 

end Compact_opt ions; 

mm*tä^mii*m*m~l**Mimt*miltm . _-iiil 
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Rda-to-SII Icon   Project 
Univ«rEity    of    Utaht 

OoD   Intornot   Protocol    INn_0UT   cubaodul« 

Rda   coda   for   tha   bodg   of   »ha   procedupat 

Send-fragment (ca I lad  by  Do.aand) 

Varalon   of   Novaabar   1,   1982 

with FlfoJIodula,   Loca l_Na t.flodu la; 

■eparate( Ina_0u t Jlodu I a. Do.aand) 

procedure Sand_frag«ant< „..IR, 
data   frag»ant_«lzai bltlB, 
auccäaaful    fragnant.trana»IaaIoni outboolaant 
"planatlo^. out out.r.apon.a) 

Functloni 
This procadura puta 
1) local not addraaa 
2) local net TOS 
3) fragment haadar 
<) fragaant data - H 

aaaociatad with 
tha data fragnan 

Thia procadura, afta 
on tha local nat (th 
by a paramatar pataa 
transmission of tha 
8uccaaaful_fragaant_ 

It it aot to fallt. 
the success <a^nt_oK 

Into tha local nat FIFO tha follo-lng - 
- local nat addraaa for tha currant fragment 
- local nat TCS for tha currant fragrant 

hlch la pullad out byta by byta fro« tha l1««ory 
tha INH.SRV «odula.  tha alza of 
t ia paaaad aa a para-atar to thla procadura. 

r «tufflng tha FIFO, «Ml do a ti-ad «"»ni •■', 
• call «mat ba conplatad In tha tlM apaclflad 
d doun fro« INtl.SRV).  Upon auccaaaful 
contanta of tha FIFO to tha local nat, «*• 
transmission flag »ill ba aat to trua, otMrulaa 
Tha valua aaalgn.d to «axp lanaatI on" eonflr«a 
) or provldaa tha raaton for fallura. 

— Ranaaad taalc antrlaai 

rrocedure na«ory_raquaat( 
P  raquaat typa.foraal: «»ory.raquaat.typa, 

chunk oT .ddraa._for.al.     chunK.of_addraaa_typa, 
octaOor.al« oat oc ta t_typa) 

rename« tla.ory.Raquasti 

procedure Local_nat_out_raq< 
co..and_fora«l.      local_nat_co..and_typa, 
raaponaa formali out local_nat_raaponaa_typa) 

renames Loca l_Na t_l1odu la.Local_Na t .Out.raqj 

procedure Flfo_raq( 
co..and_for.ali fIfo_co..and_typa; 
octat_for.a I i   octat_typa) 

renames Fi fo_l1odula.Flfo.Flf o_raqj 

Local   variable   daclarJtIonat 

octat_ragl«tar» 
local_nat_raaponaai 

oc tet_typo; 
local_nat_raaponta_typa} 

begin 
auccaaaful_fragsant_tranasl.alon   t=   trua; 

Ralnltlall»a   tha   FIFO. 

. ., 
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Flfo_P«q( 
co«in«nd_«orii« I    => r«i«t, 
oct«t_«orB«l = >  dont_c«r»_oct«t)> 

pageGZ 

—   Load   thi   FIFO   ulth   tht   Iragn^nt'i   local   n«t   addraaa   pravloual« 
 tavad   In   tha    I nm.addraaa.buHar. 
for  Indax   in 8   . .    I nai.addraaa.langth   -   1 

loop 
Fl fo_ra^( 

coiiiiiiand_for«al    =>  atora, 
octat_«or»al =>   Iniii_addraa8_buf (ardndax)) j 

end loop; 

--   Load   tha   FIFO   uith   tha   local   nat   toa. 
for  Indax   in  I oca I_nat_toB_lndax   .. 

local_nat_typa_o«_aarvica_tabla_poH_8lia 

loop 
F ifo_raq( 

coiiBand_for«a I      =>    atora, 
octat_for«al =>     toa.tabladndax)) ; 

end loop; 

    Load   tha   fragnant'a   haadar   into   tha   FIFO. 
for Indax   in »   ..   haadar.langth  -  1 

loop 
FIfo_raq( 

comaar.d_for«a I    => atora, 
octat_for«al        => haadar_octat_arpau(lndax)); 

end loop; 

— Gat the data fragmant Irom   tha «ia«ory and load It Into tha FIFO, 
for data_indax in 8 .. aogaant_langth - 1 

loop 
Maaory.raquaa t( 

raquait_typa_f OPBII     => raca I va_da tu«_oc ta t, 
chunk oT addraa»_«or«al => don t_cara_X_datu«,     _ 
octat.lormal = > octat_ragI ata^>; 

Fllo_raq( 
coii«iand_f oma I    =>  atora, 
octat.foraal = > octat.ragiatar); 

end loop; 

— Do a tliaad antry call on tha local nat Indicating that 
— tha FIFO haa a «ragaant Hlth local nat In format ten In It 

■elect 
Loc#l_nat_out_raq( 

co««iand_for*al      =>  raca I va_«rag«ant, 
raapon8a_tor«al    =>   loca l_na t.ratponaa) > 

or 
delay t l«a_ou t_ln_iil I I laaconda; 

Conditional aalact. 
-- Uaa fragaant racaivad? 

- Valua naa coaputad by 
- R«ad_lnlt_paraaatjra 

-- Tha local nat randaioua haa tlaad out. 
•xplanation t-    loc«l_nal_tIaa.out; 
auccaaaful_<rag*ant_trana«l8alon i= falaa; 

end select; 

  Taat to aaa If tha local nat racaivad tha fragaant. 
if ,uccaaa<ul_fragaant_tranaalaalon    — Local nat did not tiaa out. 

and thö« — fld• "Short-circuit" phraaa. 
not (local nat raaponaa = fragaant_racaivad_oK)  then 

  Local found aoaathlng naa Hrong. 

• xplanation J= I ocal_nat_arror; 
auccaaaful_fragaant.tranaaiaalon i= falaa; 

end if; 
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end Sand_fragaant| 

page 53 
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